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Abstract—Most of current mobile applications need to have 
mobility capabilities and are often required to work under 
different conditions, even in situations with continuous 
disconnections. Intermittently Connected Mobile Networks 
(ICMN) encompass environments with intermittent connectivity 
and long disconnection intervals. In this paper, we focus on 
defining a generic framework in order to implement existing 
routing protocols for ICMN, as well as on providing a tool to 
create a networking technology for volatile environments in 
which the message recovers some degree of choice to reach its 
destination. 
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I.  INTRODUCTION 
Nowadays, the use of mobile Internet entails an exponential 

growth of the number of existing mobile devices. This increase 
is much rapid than any previous technology. Mobile devices 
penetration has grown from a global 5% in 1998 to a 55% in 
2008, with more than 10 billion of mobile devices with Internet 
connection in 2010. It is estimated that the penetration rate will 
reach 96% in 2018 [1]. This increase of mobile devices is 
linked to the existence of a large number of applications which 
require to be continuously working under all conditions. 
However, complex features such as mobility can involve in 
some cases the existence of frequent disconnections. 

Intermittently Connected Mobile Networks (ICMN) 
represent an example of this kind of situation. Connectivity is 
intermittent and nodes get frequent disconnections. Because of 
this, long disconnection intervals are assumed. As a side effect, 
a complete path from origin to destination might not always be 
established. Over time, different links come up and down due 
to node mobility. If the sequence of connectivity graphs over a 
time interval is overlapped, then an end-to-end path might 
exist. As a result, wireless connectivity is volatile and usually 
intermittent, as nodes move in and out of range from access 
points or from each other, and as signal quality fluctuates. This 
implies that a message could be sent over an existing link, get 
buffered at the next hop until the next link in the path comes 
up, and so on, until it reaches its destination. In these 
environments, applications which require available end-to-end 
paths have to deal with issues when trying to send messages 
from an origin to a destination when there is not an end-to-end 
path available. Therefore, traditional routing protocols tend to 

show bad performances in volatile connectivity environments. 
In fact, those protocols were designed for networks where most 
of the time there is an end-to-end path available between an 
origin and a destination. However, researchers have tried to 
alleviate this problem. Actually, a number of specific routing 
protocols have been proposed for networks that do not have 
stable end-to-end connectivity. Using these protocols, nodes 
can store messages for a period of time, until new forwarding 
opportunities can be taken towards the destination. 

Routing protocols for ICMN are divided into two groups: 
deterministic and stochastic. If all the future topology of the 
network (as a time-evolving graph) is deterministic and known, 
or at least predictable, the transmission (when and where to 
forward packets) can be scheduled ahead of time so that some 
optimal objective can be achieved [2,3]. If the time-evolving 
topology is stochastic, routing protocols move the message 
closer to the destination one hop at a time. In this case, the 
nodes may know nothing about the network state and randomly 
forward packets to their neighbors. Protocols included in this 
category are globally known as epidemic [4-6]. However, if a 
node can estimate the forwarding probability of its neighbors, a 
better forwarding decision could be made. These routing 
protocols are based on history or estimations [7-9]. Moreover, 
if the mobility patterns can be used in the forwarding 
probability estimation, an even better decision may be made. 
Protocols in this category are referred to as model-based 
forwarding paradigm. Finally, network efficiency can be 
improved using a group of stochastic protocols which control 
the movements of certain nodes [10,11]. 

The main objective of this work focuses on studying the 
possibility of creating a networking technology for volatile 
network environments. Messages can participate in forwarding 
decisions based on different conditions they identify as they 
progress. For that, we have characterized a set of requirements 
for each routing protocol and we have made a proposal of a 
generic framework to implement each of those protocols. In 
addition, we have implemented one of the most relevant 
routing protocols specifically designed for these networks 
(Spray & Wait [5,6]). We have done so using our proposed 
generic framework so that our proposal can be a basis for 
researchers that work in ICMN routing topic in terms of 
implementing and validating their routing protocols. Using our 
generic framework, we expect to ease the creation of new 
potential protocols as well as the improvement of the existing 
ones. 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501   
Vol.2, No5, October 2012 

 608

The rest of the paper is organized as follows. Section II 
presents messaging framework features. Section III depicts the 
framework architecture, which is used in Section IV as the 
basis to implement one of the most relevant routing protocols 
in ICMN. Finally, some conclusions are drawn in Section V. 

II. GENERIC MESSAGING FRAMEWORK FOR ICMN 
All research to-date has focused on providing intelligent 

forwarding capabilities. Nodes can serve as a relay by 
forwarding messages across the network. In this way, messages 
traverse the network by being relayed from one node to 
another, until it reaches its destination. These nodes are 
considered as “custodians” because they typically use some 
form of store-carry-and-forward technique in order to approach 
messages to their destination. In fact, this seems a logical 
approach as the message source may be far away from places 
where particular forwarding decisions need to be made based 
on certain conditions. 

Routing protocols proposed by researchers use specific 
strategies which depend on network design decisions. These 
decisions are made in a previous stage and cannot be modified 
to adapt to volatile environments features. Thus, we propose a 
communications framework whereby the source regains some 
degree of choice whilst acknowledging that it will be too 
remote from dislocations in the communication infrastructure 
to retain direct control of the message forwarding process. We 
consider messages themselves to be proxies for the source, i.e. 
they store data and information of forwarding preferences 
through the forwarding code. 

The forwarding code has the ability of making routing 
decisions. It decides the next node towards the message must 
be forwarded. Moreover, it chooses if the message must be 
directly forwarded or stored inside the current node until a new 
forwarding opportunity. Thus, routing decisions are taken by 
the instructions specified in the forwarding code. These 
instructions use a set of primitives defined by the framework, 
which are intended to be able to perform basic routing 
operations. 

Moreover, this code includes the number of copies of the 
message or some stateful information for the process of making 
routing decisions if necessary, and if this information can be 
updated in each node belonging to the path. For this purpose, 
full routing mechanism is programmed in the forwarding code 
which is included inside the message. When a source has a 
message to send, it decides the forwarding strategy that the 
message will be programmed with. This “program” provides 
forwarding decisions to be taken by the message during its 
travel towards the destination node. All the intermediate nodes 
can execute the forwarding code included in the message and 
forward it towards a next node considered as closer to the 
destination. 

The forwarding code also includes the storage approach to 
be applied when there is a lack of forwarding opportunities. If a 
next hop is not available, the node will need to buffer the data 
until a new forwarding opportunity. Thus, if a node sends a 
message with a forwarding code within both forwarding 
mechanism and information about node storage management 

are included, that node could manage its storage area in a more 
efficient way (similarly to Differentiated Services [12]). In this 
way, the node holds its messages ordered by priority. This 
priority is provided by the users with the aim of managing their 
messages in the next time slot. Consequently, forwarding code 
will have enough information to permit the message to function 
as a learning device, akin to a mobile agent. In this manner, 
only the user (application) has the ability to decide the routing 
protocol to be used for its messages. Network can provide 
some stateful information, however it has not the ability to 
change the forwarding protocol for a certain message once this 
one has been sent from source. Next, we specify desirable 
features for the proposed framework: 

1) Minimum size of the forwarding code in order to minimize 
message size and overhead. 

2) Minimum size of the set of primitives. These primitives 
are available to be invoked in the forwarding code. With 
this minimal set of primitives we can assure that it is 
possible to program any routing protocol for ICMN. 

3) Generality. Researchers can program each of the routing 
protocols proposed for ICMN. 

4) Performance. The use of the framework must not mean a 
decrease in the network performance. 

III. GENERIC FRAMEWORK ARCHITECTURE 
In our generic framework we assume the presence of two 

key components: 

1) Messages. They transport the forwarding code, the 
operative data required from this code and the payload. 

2) Active Forwarding Nodes (AFN). They have the ability to 
execute the forwarding code of the messages they 
encounter. They provide an operating system and an 
execution environment. 

Routing mechanism is fully implemented in the message, 
i.e. the source node adds this code into the message which is 
able to follow particular forwarding strategies towards its 
destination. 

AFNs can execute the forwarding code and send the 
message towards the next node based on the logic of the code. 
Therefore, when a source has a message to send, it decides the 
forwarding strategy that a given message will be programmed 
with. This strategy can be a fixed set of rules or an algorithmic 
process that is configured with initial conditions. We do not 
attempt to specify the nature of these rules nor the algorithm; 
we simply require that they must adhere to a set of constraints. 
For example, the forwarding code could be expressed conform 
to some software interface standards for the exchange of data in 
and out from the process. 

We have already mentioned that our focus is on ICMN 
where disruption is considered to be long lasting and 
unpredictable to a greater or lesser degree depending on the 
particular scenario. We therefore assume that there is no 
previously known end-to-end path and the transient natures of 
localized communication regions make it impractical to 
disseminate this reachability information over a large area. We 
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also anticipate the presence of one or more distinct 
communication technologies that typically employ 
incompatible addressing schemes, forwarding unit structures 
and so forth. Into this disparate and fragmented environment 
we rely on the presence of a number of AFNs. These nodes can 
be mobile or fixed nodes. They provide a means for processing 
the forwarding code as well as possess communication gateway 
functionality and may be linked to different technologies, i.e., 
several AFNs with different underlying technologies (Wi-Fi, 
Bluetooth, Wibree, ZigBee, etc.) may be present inside the 
same network. 

Fig. 1 depicts the proposed architecture with the two key 
components: AFNs and messages. We assume that each node, 
from source to destination, is an AFN and may appear both 
inside the network and as an edge node to act as gateway. The 
three fundamental actions that an AFN can perform when it 
receives a message from a previous node are also represented. 
Messages have been represented using different colors to 
differentiate the possible actions to perform and to highlight 
they contain different forwarding codes. These actions are 
explained next: 

• The message cannot be forwarded towards the next node at 
the moment and it is stored inside the current AFN (red 
color). 

• The message is forwarded towards the next AFN without 
needing to be stored (green color). 

• The message is replied and sent to two different AFN 
because this action is specified in the routing protocol 
which is included in the forwarding code (yellow color).  

A. Forwarding Code Triggers 
The forwarding code may include a set of rules to execute 

only a portion of the forwarding code after a specified 
situation. These execution rules or triggers are used in such a 
way that the occurrence of a particular event connotes the 
execution of the associated forwarding code. We have 
identified five forwarding code triggers, which are shown in 
Table I. Therefore, different functionalities can be executed at 
different times. In this way, several forwarding code fragments 
may be related to different triggers. Routing protocols may not 
implement a forwarding code for each of the five execution 
rules. They can also execute the forwarding code referred to 
some of them. As forwarding code size is a critical aspect when 
designing the framework, execution rules could be 
programmed using similar structures to registers. In this way, a 
forwarding code with minimal size could be achieved. 

TABLE I. FORWARDING CODE EXECUTION RULES 

Name Description 

RECEIVE_MESSAGE When a node receives a message 

SEND_MESSAGE When a node sends a message 

STORE_MESSAGE When a message is stored in the node 

DROP_MESSAGE When a message is dropped by the node 

NODE_TIMEOUT Timer associated to a node 

 

Figure 1. Messaging architecture for ICMN. 

B. Messages 
In this point, messages structure is explained. We 

distinguish between data and control messages. The former 
include the forwarding code, a storage area to collect data as 
they progress across the network and the payload containing 
application specific data. The latter are swapped by those nodes 
which need to know some information regarding other existing 
nodes. Both types of messages are forwarded by intermediate 
nodes. 

1) Data Messages 
We assume that all data messages have the same size and 

must include information about the destination node through an 
unique identifier. This information can also be assumed as 
destination address or hardware address to identify the node as 
single. Source node identification and a TTL field (similar to IP 
header), which is decremented after every hop, can also be 
included in the message header. We have already adopted that 
messages must include the forwarding code to be executed by 
the AFNs they encounter along the path. In this way, if a 
particular routing protocol requires some information from 
messages, it must implement the corresponding functionality in 
the forwarding code. Apart from the forwarding code, 
messages possess a data storage area called environment 
information heap. As they progress throughout the network, 
messages can store some necessary information in this area. 
Moreover, there is a timeout value in the message header in 
order to set the maximum time a message can be present inside 
the network before it is dropped. The source user sets this value 
keeping in mind the network volatility. We predict a high value 
for this parameter. The message environment information heap 
stores information required by the current AFN or history-
based information needed for future executions of the 
forwarding code in the AFNs the message meets. One example 
of this type of information required by the current AFN may be 
the timestamp in which the message was stored into the AFN 
messages heap. As a history-based information example, we 
can consider the free space a previous node still has or even a 
list of nodes the message has crossed and the time spent to 
reach them. We can therefore assess the average time that a 
message lasts between two adjacent nodes. For this purpose, 
TLV (Type-Length-Value) fields can be used in a similar way 
than in IPv6. Data messages format is depicted in Fig. 2. 
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Figure 2. Data message format. 

2) Control Messages 
When the execution of the forwarding code is not enough to 

obtain required information from the rest of the nodes, control 
messages are used. This type of messages are exchanged 
between those adjacent nodes that explicit request a particular 
information. Piggybacking mechanism is exploited for this 
purpose. Control messages are always exchanged by two nodes 
with direct visibility. Once the requested information is 
transferred, both nodes can add it to the corresponding partition 
of their protocols heap. Future messages with the same routing 
scheme will benefit from this approach. Although data 
messages can be stored inside AFNs if there is no opportunity 
to directly forward them, control messages are not stored. This 
is due to prevent unnecessary consumption of the effective 
storage and bandwidth for forwarding. Fig. 3 shows control 
messages format. 

C. Active Forwarding Nodes (AFN) 
Each AFN contains a Forwarding Content Processor (FCP) 

to process the forwarding code in the arriving message stream. 
AFNs also provide a standardized way that injects local 
knowledge into the FCP to give the forwarding code the 
opportunity of using information it can glean from its current 
surroundings in a given moment. This information is typically 
related to localized reachability data and data referred to 
geographical regions or nodes which can be accessed by AFNs. 
In addition to providing a processing engine for the forwarding 
code extracted from the received messages, AFNs have the 
ability to encapsulate messages into different formats. These 
formats are appropriate for the underlying networks they have 
access. This feature includes the possibility of fragmenting 
messages and formatting header fields in accordance with the 
underlying technology constraints. AFNs capabilities are 
presented as inputs to the forwarding code so that it is aware of 
various forwarding technologies to consider. To deal with 
situations where no suitable forwarding technology is currently 
available, AFNs possess store-carry-and-forward capability in 
order to retain messages until communication resources 
become available. 

Thus, an AFN is composed of an operating system and a 
framework (upper layer) that contains the execution 
environment. The latter has the ability of executing the 
forwarding  code  in  the  arriving messages. AFNs operation is  

 

Figure 3. Control message format. 

explained next: they receive a message, execute the 
corresponding forwarding code and send it to a node according 
to the obtained result. The selected node has been chosen as the 
most suitable for the next hop. The next scheme explains AFNs 
components in the proposed framework: 

1) Message Forwarding Framework. It provides the 
programming language and the execution environment for 
the forwarding code. 

2) Operating System. It is responsible of lower level 
management and planning. 

In a lower level situated under the operating system, 
another layer, which is independent from the node physical 
technology, is present. As a proposal, we could use Media 
Independent Handover (MIH), a standard being developed by 
IEEE 802.21 to enable the communication between mobile 
devices with different underlying physical technologies [13]. 
The architecture of an AFN, which would implement this 
framework, is described in Fig. 4(a). The messaging framework 
gleans information from arriving messages in the AFN, 
executes the forwarding code included in messages and 
forwards it towards a next node chosen as the most appropriate. 
Thus, the AFN is an element with a basic function: executing 
the forwarding code included in the incoming message. 
Depending on the code, it forwards the message to a next node 
if possible, or stores it inside the AFN storage area. Regarding 
the logic structure, the AFN messaging framework is composed 
by six components: 

• Security Area. It examines integrity and validity of 
arriving messages. 

• Forwarding Content Processor (FCP). It executes the 
forwarding code. 

• Protocols Heap. Storage area with the required 
information to execute routing mechanisms included in the 
forwarding code of arriving messages. 

• Messages Heap. Storage area for those messages that 
could not be forwarded to the next node. 

• Management module with gateway functionality. Module 
used to interconnect networks with different protocols and 
architectures. 
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              (a) Architecture                                              (b) Logic Structure 

Figure 4. AFN Structure. 

• Module to estimate the best routing protocol. Source nodes 
must also include a module to determine the best routing 
protocol to send their messages. 

Fig. 4(b) shows the AFN logic structure, composed by the 
six aforementioned elements. 

Due to the high volatility of the network, nodes may appear 
and disappear unexpectedly. With our proposal, nodes without 
any information about the network are able to participate in 
forwarding decisions to get the message closer to the 
destination. Hence, there are differences between a recently 
discovered node and another node which was discovered long 
time ago. Obviously, the latter has more information about the 
environment than the former and will be able to act more 
precisely. For that, when an AFN is discovered by the network, 
its protocol heap is initialized. This area stores information 
related to the routing protocols needed to execute the 
forwarding code in the incoming messages. It will be initially 
empty and updated as it receives messages with a forwarding 
code. The code contains the forwarding strategies 
corresponding to a certain protocol. If this protocol needs some 
information that must be provided by the network, the current 
AFN adds it to the protocols heap. Using this storage 
methodology based on protocol partitions, generality is 
obtained in such a way that an anomalous operation of a certain 
protocol does not affect the treatment of future messages from 
different protocols. 

A buffer management scheme is used to administer 
protocols heap. We must define a maximum size for the heap 
although partitions may be variable for different protocols with 
different features. It is necessary to identify protocols needs 
and allocate storage space depending on them. This approach is 
used because some protocols need more information than 
others. For example, epidemic routing [4] only requires a list of 
neighbors to decide the next hop. Fig. 5 depicts an example 
where the protocols heap stores information for three different 
routing protocols. An AFN receives a message with a 
forwarding code for the routing protocol number 1. Then, the 
corresponding partition of the protocols heap is updated (or 
created) to execute the forwarding code of the message. Table 
II shows an example of information stored into one of the 
partitions included in the protocols heap of a certain AFN. 
Therefore, the protocols heap updates its information according 
to  the  routing protocols included in the forwarding code of the  

 

Figure 5. Protocols heap structure. 

arriving messages. For those protocols not already included in 
the heap, the AFN allocates the corresponding space. This 
information stored in the protocols heap is only updated when 
the forwarding code of a message is executed. In this way, it 
can be updated either every time the AFN receives a message 
with the same routing scheme included in the forwarding code 
or every time the AFN receives a message. A timer can be also 
used, which may be the node local clock. Another possibility of 
execution could be either after a change in node neighborhood 
or when a new node is discovered. 

Only stateful information can be stored in the AFNs 
protocols heap, i.e., the minimum information to let AFNs 
execute the forwarding code of a message. AFNs have a timer 
to release resources reserved for maintaining the information 
required by protocols if there are no updates for a predefined 
time. In this manner, protocols heap free space is increased to 
include new protocols that need to store some information after 
messages arrival. Apart from protocols heap, there is another 
area in AFNs for message storing: messages heap. Both storage 
areas are managed in a similar way. In this case, AFNs provide 
a finite area with the purpose of storing those messages which 
could not be forwarded after the execution of the forwarding 
code. An example of organization of this storage area is shown 
in Fig. 6. As in protocols heap, we need to define a maximum 
size for this area. In this case, the space reserved for each 
message is the same and, therefore, partitions in messages heap 
have all the same size. Initially, when a node is discovered, its 
messages heap is free, ready to be used if necessary. There is a 
timer to provide node dynamism in such a way that messages 
do not remain stored indefinitely. Those messages stored 
before the timeout was active are deleted in order to increase 
the free space available. Then, future messages can be stored. 

TABLE II. EXAMPLE OF INFORMATION STORED INSIDE A PROTOCOLS HEAP 
PARTITION 

Node 
identifier 

Time since it was 
detected inside the 

coverage area 

Is it a destination 
node for a stored 

message? 

Node_ID1 00 min 35 sec 86 cent No 

Node_ID2 00 min 07 sec 23 cent No 

Node_ID3 00 min 02 sec 84 cent Yes, Message_ID4 

 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501   
Vol.2, No5, October 2012 

 612

 

Figure 6. Messages heap structure. 

Otherwise, if a message needs to be stored in an AFN and there 
is no space for it, the oldest message in the heap is deleted. 
Based on the AFN logic structure, we designed the AFN 
software structure. It depicts the way the incoming messages 
are treated in an AFN. 

1) Security and Communication Module takes charge of 
receiving and sending messages. When an AFN receives a 
message, the first issue to do is related to security and 
integrity examinations. 

2) When security examinations are successfully passed, the 
FCP check if the message includes the forwarding code. If 
so, the FCP executes it, else the Security and 
Communication Module sends the message to the next 
node randomly. 

3) The FCP updates the corresponding partition in the 
protocols heap and performs some actions depending on 
the obtained result: if the message must be stored inside 
the messages heap, the FCP takes charge of storing it but if 
it must be forwarded then the FCP sends the message to 
the Security and Communication Module. 

4) Finally, this module forwards the message towards the 
next node based on the result of the previous step. 

Interaction between the source user (application) and the 
generic framework is limited to send and receive messages. 
The user decides to send a message and indicates the 
forwarding code to use. The first AFN includes this code inside 
the message and performs the first hop. It also acquires the 
information related to the network interaction pattern. In this 
way, the user can choose the most suitable forwarding code 
depending on the information expected to be received from the 
network. Some routing protocols may require operation 
parameters to be fixed at the beginning of the communication 
process. For that, the user can set the operating parameters 
needed to execute the forwarding code associated to messages. 
These parameters could require to be spread throughout the 
network. In that case, they should be transported inside the 
message, specifically in the heap of the message. For this 
purpose, the source node should include some execution code 
not only to obtain the best routing protocol to use but also to 
estimate the most suitable operation parameters to be included 
inside the message. Two possible parameters could be the 
number of copies of the message or the mobility degree of the 
network. 

TABLE III. PRIMITIVES AND FUNCTIONS OF THE GENERIC FRAMEWORK 

Group Name of primitive/function 

Primitives 

requestNodeCoverage, sendControlMessage, 
receiveControlMessage, sendDataMessage, 

receiveDataMessage, setMessageEmptyTimer, 
addProtocolHeapPartition, 

updateProtocolHeapPartition, 
getProtocolHeapPartition, storeMessage 

Protocols heap 
control 

functions 

setProtocolHeapUpdateTimer, 
setProtocolHeapEmptyTimer, 

setProtocolPartitionEmptyTimer 

Messages heap 
control 

functions 

setMessagesHeapEmptyTimer, storeMessage, 
isStored, replaceMessage, dropOlderMessage, 

getBufferFreeSize 

Stateful 
information 
management 

functions 

getTimeActive, getNodesMeetingFrequency, 
getUtilityNodesCoverage, setCoverageDistance, 

getHistoricalInfo, getConnectivityChange 

D. Forwarding Code Primitives 
We propose a minimum set of primitives to be invoked by 

the forwarding code in order to implement the routing 
protocols with the proposed generic framework. The main goal 
is to guarantee that this minimum set of primitives is enough to 
program any routing protocol in ICMN. The framework also 
provides a set of functions which are implemented in AFNs. 
Both primitives and functions are described in Table III. 

IV. IMPLEMENTATION OF A ROUTING PROTOCOL:  
 SPRAY & WAIT 

Spyropoulos et al. propose a routing protocol called Spray 
& Wait [5,6] in two versions (Source Spray & Wait and Binary 
Spray & Wait). Desirable goals are explained next: 

• Perform fewer message transmissions than epidemic and 
other flooding-based routing schemes, under all 
conditions. 

• Generate low contention, especially under high traffic 
loads. 

• Achieve a better delivery delay than existing single and 
multi-copy schemes, and close to the optimal. 

• Be highly scalable, i.e. maintain the performance behavior 
despite changes in network size or node density. 

• Be simple and require as little knowledge about the 
network as possible, in order to facilitate implementation. 

Spray & Wait is one of the most relevant routing protocols 
in ICMN. It consists of the following two phases: 

• Spray Phase: For every message generated at a source 
node, L copies are initially spread to L distinct “relay” 
nodes (intermediate nodes). 

• Wait Phase: If the destination is not found in the Spray 
phase, each of the L nodes carrying a message copy 
performs direct transmission. 

In next sections, we present the implementation of the two 
versions of the routing protocol Spray & Wait using the generic 
framework. 
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A. Source Spray & Wait 
Source node (first hop) 

• It sends L copies of the message to the L first nodes it 
encounters. L value is set by source user (application). It is 
a necessary operation parameter (num_copies). 

• If the number of neighbors in the neighborhood n is less 
than L, the source node sends n copies of the message, one 
copy to each neighbor in the list. After that, it waits the 
chance of forwarding the remaining L-n copies. In this 
case, the node will send the rest of the copies in future 
executions. 

• No copies of the message will be stored inside the 
messages heap of the source node, because all the copies 
are distributed throughout the network. 

• If a node belonging the coverage area is the destination 
node of the message (destination address check), the 
source node sends it a copy of the message and stops 
sending copies to the remaining nodes. 

Pseudocode of the forwarding code to be executed by the 
source node is described next. Invoked primitives are written in 
italics. 
 
start 
    info_protocol=getProtocolHeapPartition (Source_Spray_And_Wait) 
    if (isEmpty(info_protocol)) then 
      L = num_copies 
    else L = info_protocol (num_copies) 
    end_if 
    counter = 0 
    destination = false 
    nodesList = requestNodeCoverage 
    while (NOT end nodesList) AND (destination == false) do 
      if (counter < L) then 
        sendDataMessage (msg, nodesList(counter)) 
        counter = counter + 1 
        if (isDestinationNode (nodesList(counter))) then 
          destination = true 
        end if 
      end if 
    end while 
    if (destination == false) then 
      if (counter != L) then 
        addProtocolHeapPartition(Source_Spray_And_Wait,num_copies, 
                                                        L-counter) 
      end if 
    end if 
end 
 

Intermediate nodes 

• It receives a copy of the message which was sent by 
another node. 

• It requests some information from the neighborhood. 

• In case of no neighbors, it stores the message inside the 
messages heap. 

• If it has neighbors, sends the copy of the message 
randomly to one of them. 

start 
    cases: RECEIVE_MESSAGE, NODE_TIMEOUT 
 
    nodesList = requestNodeCoverage 
    if (isEmpty (nodesList)) then 
      storeMessage (msg) 
    else 
      node_id = random (nodesList) 
      sendDataMessage (msg, nodesList(node_id)) 
    end if 
end 

B. Binary Spray & Wait 
Source node (first hop) 

• It sends L/2 copies of the message to the L/2 first nodes it 
encounters. L value is set by source user (application). It is 
a necessary operation parameter (num_copies). 

• If the number of neighbors in the neighborhood n is less 
than L/2, the source node sends L/2 copies of the message 
to each neighbor in the list and waits the chance of also 
forwarding L/2 copies to the (L/2)-n remaining nodes. In 
this case, the node will send the rest of the copies in future 
executions. 

• It stores L/2 copies inside the messages heap. 

• If a node belonging the coverage area is the destination 
node of the message (destination address check), the 
source node stops sending copies to the remaining nodes. 

start 
    info_protocol=getProtocolHeapPartition(Binary_Spray_And_Wait) 
    if (isEmpty(info_protocol)) then 
      L = num_copies 
    else L = info_protocol (num_copies) 
    end_if 
    counter = 0 
    destination = false 
    nodesList = requestNodeCoverage 
    while (NOT end nodesList) AND (destination == false) do 
      if (counter < (L/2)) then 
        for i from 0 to (L/2) do 
          sendDataMessage (msg, nodesList(i)) 
        end_for 
        if (isDestinationNode (nodesList(counter))) then 
          destination = true 
        end if 
      end if 
    end while 
    if (destination == false) then 
      if (counter != (L/2)) then 
        addProtocolHeapPartition(Binary_Spray_And_Wait,num_copies, 
                                                    (L/2)-counter) 
        storeMessage (counter,msg) 
      else storeMessage (L/2, msg) 
      end if 
    end if 
end 
 

Intermediate nodes 

• It receives X copies of the message which was sent by the 
source node. 

• It requests some information from the neighborhood. 
• If X  > 1, it sends X/2 copies of the message to the X/2 

first nodes it encounters. 
o It stores X/2 copies inside the messages heap. 

• If X = 1, it sends a copy of the message to each node in 
coverage. 

o No copies are stored inside the messages heap. 
start 
    cases: RECEIVE_MESSAGE, NODE_TIMEOUT 
 
    nodesList = requestNodeCoverage 
    if (num_copies > 1) then 
      counter = 0 
      while (NOT end nodesList) do 
        if (counter < (num_copies/2)) then 
          for i from 0 to (num_copies/2) do 
            sendDataMessage (msg, nodesList(i)) 
          end_for 
        end if 
      end while 
      storeMessage (num_copies/2, msg) 
    else 
      for node in nodesList do 
        sendDataMessage (msg, node) 
      end_for 
    end if 
end 
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V. CONCLUSION 
In the last few years, researchers have proposed a wide 

variety of routing protocols for ICMN. However, these 
protocols are designed to be executed under particular 
conditions. Moreover, researchers show homogeneous results 
which cannot determine the best routing protocol for a 
particular scenario. This entails the absence of tools to give a 
node the ability of executing some of these protocols in a 
generic way. 

In this work, we propose a generic framework to execute 
some of these ICMN routing protocols as a function of user 
choice. For that, we have defined the AFN architecture and 
messages format, both data and control messages. We have 
shown that routing protocols can be implemented with this 
framework using a reduced set of primitives and execution 
rules. Moreover, two storage areas (one in the AFN and 
another in the message) are needed to store stateful and history 
information respectively. 

We have also demonstrated that one of the most relevant 
routing protocols in ICMN, Spray & Wait in both versions, can 
be implemented using the generic framework. Furthermore, we 
estimate a small size for the forwarding code to be executed by 
AFNs due to its simplicity. This fact entails a small message 
size. Thus, our proposal can be used as starting point for 
researchers in ICMN routing: they can implement and validate 
their routing protocols and create new potential ones to achieve 
better results. 
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