
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 607

AMFVoNet: An Active Messaging Framework
for Volatile Networking

Jaime Galán-Jiménez, Alfonso Gazo-Cervero
Computer Science and Communications Engineering Dept.

University of Extremadura, Cáceres, Spain
{jaime,agazo}@unex.es

Abstract—Most of current mobile applications need to have
mobility capabilities and are often required to work under
different conditions, even in situations with continuous
disconnections. Intermittently Connected Mobile Networks
(ICMN) encompass environments with intermittent connectivity
and long disconnection intervals. In this paper, we focus on
defining a generic framework in order to implement existing
routing protocols for ICMN, as well as on providing a tool to
create a networking technology for volatile environments in
which the message recovers some degree of choice to reach its
destination.

Keywords-volatile networking, forwarding code, ICMN,
protocols, AFN

I. INTRODUCTION
Nowadays, the use of mobile Internet entails an exponential

growth of the number of existing mobile devices. This increase
is much rapid than any previous technology. Mobile devices
penetration has grown from a global 5% in 1998 to a 55% in
2008, with more than 10 billion of mobile devices with Internet
connection in 2010. It is estimated that the penetration rate will
reach 96% in 2018 [1]. This increase of mobile devices is
linked to the existence of a large number of applications which
require to be continuously working under all conditions.
However, complex features such as mobility can involve in
some cases the existence of frequent disconnections.

Intermittently Connected Mobile Networks (ICMN)
represent an example of this kind of situation. Connectivity is
intermittent and nodes get frequent disconnections. Because of
this, long disconnection intervals are assumed. As a side effect,
a complete path from origin to destination might not always be
established. Over time, different links come up and down due
to node mobility. If the sequence of connectivity graphs over a
time interval is overlapped, then an end-to-end path might
exist. As a result, wireless connectivity is volatile and usually
intermittent, as nodes move in and out of range from access
points or from each other, and as signal quality fluctuates. This
implies that a message could be sent over an existing link, get
buffered at the next hop until the next link in the path comes
up, and so on, until it reaches its destination. In these
environments, applications which require available end-to-end
paths have to deal with issues when trying to send messages
from an origin to a destination when there is not an end-to-end
path available. Therefore, traditional routing protocols tend to

show bad performances in volatile connectivity environments.
In fact, those protocols were designed for networks where most
of the time there is an end-to-end path available between an
origin and a destination. However, researchers have tried to
alleviate this problem. Actually, a number of specific routing
protocols have been proposed for networks that do not have
stable end-to-end connectivity. Using these protocols, nodes
can store messages for a period of time, until new forwarding
opportunities can be taken towards the destination.

Routing protocols for ICMN are divided into two groups:
deterministic and stochastic. If all the future topology of the
network (as a time-evolving graph) is deterministic and known,
or at least predictable, the transmission (when and where to
forward packets) can be scheduled ahead of time so that some
optimal objective can be achieved [2,3]. If the time-evolving
topology is stochastic, routing protocols move the message
closer to the destination one hop at a time. In this case, the
nodes may know nothing about the network state and randomly
forward packets to their neighbors. Protocols included in this
category are globally known as epidemic [4-6]. However, if a
node can estimate the forwarding probability of its neighbors, a
better forwarding decision could be made. These routing
protocols are based on history or estimations [7-9]. Moreover,
if the mobility patterns can be used in the forwarding
probability estimation, an even better decision may be made.
Protocols in this category are referred to as model-based
forwarding paradigm. Finally, network efficiency can be
improved using a group of stochastic protocols which control
the movements of certain nodes [10,11].

The main objective of this work focuses on studying the
possibility of creating a networking technology for volatile
network environments. Messages can participate in forwarding
decisions based on different conditions they identify as they
progress. For that, we have characterized a set of requirements
for each routing protocol and we have made a proposal of a
generic framework to implement each of those protocols. In
addition, we have implemented one of the most relevant
routing protocols specifically designed for these networks
(Spray & Wait [5,6]). We have done so using our proposed
generic framework so that our proposal can be a basis for
researchers that work in ICMN routing topic in terms of
implementing and validating their routing protocols. Using our
generic framework, we expect to ease the creation of new
potential protocols as well as the improvement of the existing
ones.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 608

The rest of the paper is organized as follows. Section II
presents messaging framework features. Section III depicts the
framework architecture, which is used in Section IV as the
basis to implement one of the most relevant routing protocols
in ICMN. Finally, some conclusions are drawn in Section V.

II. GENERIC MESSAGING FRAMEWORK FOR ICMN
All research to-date has focused on providing intelligent

forwarding capabilities. Nodes can serve as a relay by
forwarding messages across the network. In this way, messages
traverse the network by being relayed from one node to
another, until it reaches its destination. These nodes are
considered as “custodians” because they typically use some
form of store-carry-and-forward technique in order to approach
messages to their destination. In fact, this seems a logical
approach as the message source may be far away from places
where particular forwarding decisions need to be made based
on certain conditions.

Routing protocols proposed by researchers use specific
strategies which depend on network design decisions. These
decisions are made in a previous stage and cannot be modified
to adapt to volatile environments features. Thus, we propose a
communications framework whereby the source regains some
degree of choice whilst acknowledging that it will be too
remote from dislocations in the communication infrastructure
to retain direct control of the message forwarding process. We
consider messages themselves to be proxies for the source, i.e.
they store data and information of forwarding preferences
through the forwarding code.

The forwarding code has the ability of making routing
decisions. It decides the next node towards the message must
be forwarded. Moreover, it chooses if the message must be
directly forwarded or stored inside the current node until a new
forwarding opportunity. Thus, routing decisions are taken by
the instructions specified in the forwarding code. These
instructions use a set of primitives defined by the framework,
which are intended to be able to perform basic routing
operations.

Moreover, this code includes the number of copies of the
message or some stateful information for the process of making
routing decisions if necessary, and if this information can be
updated in each node belonging to the path. For this purpose,
full routing mechanism is programmed in the forwarding code
which is included inside the message. When a source has a
message to send, it decides the forwarding strategy that the
message will be programmed with. This “program” provides
forwarding decisions to be taken by the message during its
travel towards the destination node. All the intermediate nodes
can execute the forwarding code included in the message and
forward it towards a next node considered as closer to the
destination.

The forwarding code also includes the storage approach to
be applied when there is a lack of forwarding opportunities. If a
next hop is not available, the node will need to buffer the data
until a new forwarding opportunity. Thus, if a node sends a
message with a forwarding code within both forwarding
mechanism and information about node storage management

are included, that node could manage its storage area in a more
efficient way (similarly to Differentiated Services [12]). In this
way, the node holds its messages ordered by priority. This
priority is provided by the users with the aim of managing their
messages in the next time slot. Consequently, forwarding code
will have enough information to permit the message to function
as a learning device, akin to a mobile agent. In this manner,
only the user (application) has the ability to decide the routing
protocol to be used for its messages. Network can provide
some stateful information, however it has not the ability to
change the forwarding protocol for a certain message once this
one has been sent from source. Next, we specify desirable
features for the proposed framework:

1) Minimum size of the forwarding code in order to minimize
message size and overhead.

2) Minimum size of the set of primitives. These primitives
are available to be invoked in the forwarding code. With
this minimal set of primitives we can assure that it is
possible to program any routing protocol for ICMN.

3) Generality. Researchers can program each of the routing
protocols proposed for ICMN.

4) Performance. The use of the framework must not mean a
decrease in the network performance.

III. GENERIC FRAMEWORK ARCHITECTURE
In our generic framework we assume the presence of two

key components:

1) Messages. They transport the forwarding code, the
operative data required from this code and the payload.

2) Active Forwarding Nodes (AFN). They have the ability to
execute the forwarding code of the messages they
encounter. They provide an operating system and an
execution environment.

Routing mechanism is fully implemented in the message,
i.e. the source node adds this code into the message which is
able to follow particular forwarding strategies towards its
destination.

AFNs can execute the forwarding code and send the
message towards the next node based on the logic of the code.
Therefore, when a source has a message to send, it decides the
forwarding strategy that a given message will be programmed
with. This strategy can be a fixed set of rules or an algorithmic
process that is configured with initial conditions. We do not
attempt to specify the nature of these rules nor the algorithm;
we simply require that they must adhere to a set of constraints.
For example, the forwarding code could be expressed conform
to some software interface standards for the exchange of data in
and out from the process.

We have already mentioned that our focus is on ICMN
where disruption is considered to be long lasting and
unpredictable to a greater or lesser degree depending on the
particular scenario. We therefore assume that there is no
previously known end-to-end path and the transient natures of
localized communication regions make it impractical to
disseminate this reachability information over a large area. We

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 609

also anticipate the presence of one or more distinct
communication technologies that typically employ
incompatible addressing schemes, forwarding unit structures
and so forth. Into this disparate and fragmented environment
we rely on the presence of a number of AFNs. These nodes can
be mobile or fixed nodes. They provide a means for processing
the forwarding code as well as possess communication gateway
functionality and may be linked to different technologies, i.e.,
several AFNs with different underlying technologies (Wi-Fi,
Bluetooth, Wibree, ZigBee, etc.) may be present inside the
same network.

Fig. 1 depicts the proposed architecture with the two key
components: AFNs and messages. We assume that each node,
from source to destination, is an AFN and may appear both
inside the network and as an edge node to act as gateway. The
three fundamental actions that an AFN can perform when it
receives a message from a previous node are also represented.
Messages have been represented using different colors to
differentiate the possible actions to perform and to highlight
they contain different forwarding codes. These actions are
explained next:

• The message cannot be forwarded towards the next node at
the moment and it is stored inside the current AFN (red
color).

• The message is forwarded towards the next AFN without
needing to be stored (green color).

• The message is replied and sent to two different AFN
because this action is specified in the routing protocol
which is included in the forwarding code (yellow color).

A. Forwarding Code Triggers
The forwarding code may include a set of rules to execute

only a portion of the forwarding code after a specified
situation. These execution rules or triggers are used in such a
way that the occurrence of a particular event connotes the
execution of the associated forwarding code. We have
identified five forwarding code triggers, which are shown in
Table I. Therefore, different functionalities can be executed at
different times. In this way, several forwarding code fragments
may be related to different triggers. Routing protocols may not
implement a forwarding code for each of the five execution
rules. They can also execute the forwarding code referred to
some of them. As forwarding code size is a critical aspect when
designing the framework, execution rules could be
programmed using similar structures to registers. In this way, a
forwarding code with minimal size could be achieved.

TABLE I. FORWARDING CODE EXECUTION RULES

Name Description

RECEIVE_MESSAGE When a node receives a message

SEND_MESSAGE When a node sends a message

STORE_MESSAGE When a message is stored in the node

DROP_MESSAGE When a message is dropped by the node

NODE_TIMEOUT Timer associated to a node

Figure 1. Messaging architecture for ICMN.

B. Messages
In this point, messages structure is explained. We

distinguish between data and control messages. The former
include the forwarding code, a storage area to collect data as
they progress across the network and the payload containing
application specific data. The latter are swapped by those nodes
which need to know some information regarding other existing
nodes. Both types of messages are forwarded by intermediate
nodes.

1) Data Messages
We assume that all data messages have the same size and

must include information about the destination node through an
unique identifier. This information can also be assumed as
destination address or hardware address to identify the node as
single. Source node identification and a TTL field (similar to IP
header), which is decremented after every hop, can also be
included in the message header. We have already adopted that
messages must include the forwarding code to be executed by
the AFNs they encounter along the path. In this way, if a
particular routing protocol requires some information from
messages, it must implement the corresponding functionality in
the forwarding code. Apart from the forwarding code,
messages possess a data storage area called environment
information heap. As they progress throughout the network,
messages can store some necessary information in this area.
Moreover, there is a timeout value in the message header in
order to set the maximum time a message can be present inside
the network before it is dropped. The source user sets this value
keeping in mind the network volatility. We predict a high value
for this parameter. The message environment information heap
stores information required by the current AFN or history-
based information needed for future executions of the
forwarding code in the AFNs the message meets. One example
of this type of information required by the current AFN may be
the timestamp in which the message was stored into the AFN
messages heap. As a history-based information example, we
can consider the free space a previous node still has or even a
list of nodes the message has crossed and the time spent to
reach them. We can therefore assess the average time that a
message lasts between two adjacent nodes. For this purpose,
TLV (Type-Length-Value) fields can be used in a similar way
than in IPv6. Data messages format is depicted in Fig. 2.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 610

Figure 2. Data message format.

2) Control Messages
When the execution of the forwarding code is not enough to

obtain required information from the rest of the nodes, control
messages are used. This type of messages are exchanged
between those adjacent nodes that explicit request a particular
information. Piggybacking mechanism is exploited for this
purpose. Control messages are always exchanged by two nodes
with direct visibility. Once the requested information is
transferred, both nodes can add it to the corresponding partition
of their protocols heap. Future messages with the same routing
scheme will benefit from this approach. Although data
messages can be stored inside AFNs if there is no opportunity
to directly forward them, control messages are not stored. This
is due to prevent unnecessary consumption of the effective
storage and bandwidth for forwarding. Fig. 3 shows control
messages format.

C. Active Forwarding Nodes (AFN)
Each AFN contains a Forwarding Content Processor (FCP)

to process the forwarding code in the arriving message stream.
AFNs also provide a standardized way that injects local
knowledge into the FCP to give the forwarding code the
opportunity of using information it can glean from its current
surroundings in a given moment. This information is typically
related to localized reachability data and data referred to
geographical regions or nodes which can be accessed by AFNs.
In addition to providing a processing engine for the forwarding
code extracted from the received messages, AFNs have the
ability to encapsulate messages into different formats. These
formats are appropriate for the underlying networks they have
access. This feature includes the possibility of fragmenting
messages and formatting header fields in accordance with the
underlying technology constraints. AFNs capabilities are
presented as inputs to the forwarding code so that it is aware of
various forwarding technologies to consider. To deal with
situations where no suitable forwarding technology is currently
available, AFNs possess store-carry-and-forward capability in
order to retain messages until communication resources
become available.

Thus, an AFN is composed of an operating system and a
framework (upper layer) that contains the execution
environment. The latter has the ability of executing the
forwarding code in the arriving messages. AFNs operation is

Figure 3. Control message format.

explained next: they receive a message, execute the
corresponding forwarding code and send it to a node according
to the obtained result. The selected node has been chosen as the
most suitable for the next hop. The next scheme explains AFNs
components in the proposed framework:

1) Message Forwarding Framework. It provides the
programming language and the execution environment for
the forwarding code.

2) Operating System. It is responsible of lower level
management and planning.

In a lower level situated under the operating system,
another layer, which is independent from the node physical
technology, is present. As a proposal, we could use Media
Independent Handover (MIH), a standard being developed by
IEEE 802.21 to enable the communication between mobile
devices with different underlying physical technologies [13].
The architecture of an AFN, which would implement this
framework, is described in Fig. 4(a). The messaging framework
gleans information from arriving messages in the AFN,
executes the forwarding code included in messages and
forwards it towards a next node chosen as the most appropriate.
Thus, the AFN is an element with a basic function: executing
the forwarding code included in the incoming message.
Depending on the code, it forwards the message to a next node
if possible, or stores it inside the AFN storage area. Regarding
the logic structure, the AFN messaging framework is composed
by six components:

• Security Area. It examines integrity and validity of
arriving messages.

• Forwarding Content Processor (FCP). It executes the
forwarding code.

• Protocols Heap. Storage area with the required
information to execute routing mechanisms included in the
forwarding code of arriving messages.

• Messages Heap. Storage area for those messages that
could not be forwarded to the next node.

• Management module with gateway functionality. Module
used to interconnect networks with different protocols and
architectures.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 611

 (a) Architecture (b) Logic Structure

Figure 4. AFN Structure.

• Module to estimate the best routing protocol. Source nodes
must also include a module to determine the best routing
protocol to send their messages.

Fig. 4(b) shows the AFN logic structure, composed by the
six aforementioned elements.

Due to the high volatility of the network, nodes may appear
and disappear unexpectedly. With our proposal, nodes without
any information about the network are able to participate in
forwarding decisions to get the message closer to the
destination. Hence, there are differences between a recently
discovered node and another node which was discovered long
time ago. Obviously, the latter has more information about the
environment than the former and will be able to act more
precisely. For that, when an AFN is discovered by the network,
its protocol heap is initialized. This area stores information
related to the routing protocols needed to execute the
forwarding code in the incoming messages. It will be initially
empty and updated as it receives messages with a forwarding
code. The code contains the forwarding strategies
corresponding to a certain protocol. If this protocol needs some
information that must be provided by the network, the current
AFN adds it to the protocols heap. Using this storage
methodology based on protocol partitions, generality is
obtained in such a way that an anomalous operation of a certain
protocol does not affect the treatment of future messages from
different protocols.

A buffer management scheme is used to administer
protocols heap. We must define a maximum size for the heap
although partitions may be variable for different protocols with
different features. It is necessary to identify protocols needs
and allocate storage space depending on them. This approach is
used because some protocols need more information than
others. For example, epidemic routing [4] only requires a list of
neighbors to decide the next hop. Fig. 5 depicts an example
where the protocols heap stores information for three different
routing protocols. An AFN receives a message with a
forwarding code for the routing protocol number 1. Then, the
corresponding partition of the protocols heap is updated (or
created) to execute the forwarding code of the message. Table
II shows an example of information stored into one of the
partitions included in the protocols heap of a certain AFN.
Therefore, the protocols heap updates its information according
to the routing protocols included in the forwarding code of the

Figure 5. Protocols heap structure.

arriving messages. For those protocols not already included in
the heap, the AFN allocates the corresponding space. This
information stored in the protocols heap is only updated when
the forwarding code of a message is executed. In this way, it
can be updated either every time the AFN receives a message
with the same routing scheme included in the forwarding code
or every time the AFN receives a message. A timer can be also
used, which may be the node local clock. Another possibility of
execution could be either after a change in node neighborhood
or when a new node is discovered.

Only stateful information can be stored in the AFNs
protocols heap, i.e., the minimum information to let AFNs
execute the forwarding code of a message. AFNs have a timer
to release resources reserved for maintaining the information
required by protocols if there are no updates for a predefined
time. In this manner, protocols heap free space is increased to
include new protocols that need to store some information after
messages arrival. Apart from protocols heap, there is another
area in AFNs for message storing: messages heap. Both storage
areas are managed in a similar way. In this case, AFNs provide
a finite area with the purpose of storing those messages which
could not be forwarded after the execution of the forwarding
code. An example of organization of this storage area is shown
in Fig. 6. As in protocols heap, we need to define a maximum
size for this area. In this case, the space reserved for each
message is the same and, therefore, partitions in messages heap
have all the same size. Initially, when a node is discovered, its
messages heap is free, ready to be used if necessary. There is a
timer to provide node dynamism in such a way that messages
do not remain stored indefinitely. Those messages stored
before the timeout was active are deleted in order to increase
the free space available. Then, future messages can be stored.

TABLE II. EXAMPLE OF INFORMATION STORED INSIDE A PROTOCOLS HEAP
PARTITION

Node
identifier

Time since it was
detected inside the

coverage area

Is it a destination
node for a stored

message?

Node_ID1 00 min 35 sec 86 cent No

Node_ID2 00 min 07 sec 23 cent No

Node_ID3 00 min 02 sec 84 cent Yes, Message_ID4

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 612

Figure 6. Messages heap structure.

Otherwise, if a message needs to be stored in an AFN and there
is no space for it, the oldest message in the heap is deleted.
Based on the AFN logic structure, we designed the AFN
software structure. It depicts the way the incoming messages
are treated in an AFN.

1) Security and Communication Module takes charge of
receiving and sending messages. When an AFN receives a
message, the first issue to do is related to security and
integrity examinations.

2) When security examinations are successfully passed, the
FCP check if the message includes the forwarding code. If
so, the FCP executes it, else the Security and
Communication Module sends the message to the next
node randomly.

3) The FCP updates the corresponding partition in the
protocols heap and performs some actions depending on
the obtained result: if the message must be stored inside
the messages heap, the FCP takes charge of storing it but if
it must be forwarded then the FCP sends the message to
the Security and Communication Module.

4) Finally, this module forwards the message towards the
next node based on the result of the previous step.

Interaction between the source user (application) and the
generic framework is limited to send and receive messages.
The user decides to send a message and indicates the
forwarding code to use. The first AFN includes this code inside
the message and performs the first hop. It also acquires the
information related to the network interaction pattern. In this
way, the user can choose the most suitable forwarding code
depending on the information expected to be received from the
network. Some routing protocols may require operation
parameters to be fixed at the beginning of the communication
process. For that, the user can set the operating parameters
needed to execute the forwarding code associated to messages.
These parameters could require to be spread throughout the
network. In that case, they should be transported inside the
message, specifically in the heap of the message. For this
purpose, the source node should include some execution code
not only to obtain the best routing protocol to use but also to
estimate the most suitable operation parameters to be included
inside the message. Two possible parameters could be the
number of copies of the message or the mobility degree of the
network.

TABLE III. PRIMITIVES AND FUNCTIONS OF THE GENERIC FRAMEWORK

Group Name of primitive/function

Primitives

requestNodeCoverage, sendControlMessage,
receiveControlMessage, sendDataMessage,

receiveDataMessage, setMessageEmptyTimer,
addProtocolHeapPartition,

updateProtocolHeapPartition,
getProtocolHeapPartition, storeMessage

Protocols heap
control

functions

setProtocolHeapUpdateTimer,
setProtocolHeapEmptyTimer,

setProtocolPartitionEmptyTimer

Messages heap
control

functions

setMessagesHeapEmptyTimer, storeMessage,
isStored, replaceMessage, dropOlderMessage,

getBufferFreeSize

Stateful
information
management

functions

getTimeActive, getNodesMeetingFrequency,
getUtilityNodesCoverage, setCoverageDistance,

getHistoricalInfo, getConnectivityChange

D. Forwarding Code Primitives
We propose a minimum set of primitives to be invoked by

the forwarding code in order to implement the routing
protocols with the proposed generic framework. The main goal
is to guarantee that this minimum set of primitives is enough to
program any routing protocol in ICMN. The framework also
provides a set of functions which are implemented in AFNs.
Both primitives and functions are described in Table III.

IV. IMPLEMENTATION OF A ROUTING PROTOCOL:
 SPRAY & WAIT

Spyropoulos et al. propose a routing protocol called Spray
& Wait [5,6] in two versions (Source Spray & Wait and Binary
Spray & Wait). Desirable goals are explained next:

• Perform fewer message transmissions than epidemic and
other flooding-based routing schemes, under all
conditions.

• Generate low contention, especially under high traffic
loads.

• Achieve a better delivery delay than existing single and
multi-copy schemes, and close to the optimal.

• Be highly scalable, i.e. maintain the performance behavior
despite changes in network size or node density.

• Be simple and require as little knowledge about the
network as possible, in order to facilitate implementation.

Spray & Wait is one of the most relevant routing protocols
in ICMN. It consists of the following two phases:

• Spray Phase: For every message generated at a source
node, L copies are initially spread to L distinct “relay”
nodes (intermediate nodes).

• Wait Phase: If the destination is not found in the Spray
phase, each of the L nodes carrying a message copy
performs direct transmission.

In next sections, we present the implementation of the two
versions of the routing protocol Spray & Wait using the generic
framework.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 613

A. Source Spray & Wait
Source node (first hop)

• It sends L copies of the message to the L first nodes it
encounters. L value is set by source user (application). It is
a necessary operation parameter (num_copies).

• If the number of neighbors in the neighborhood n is less
than L, the source node sends n copies of the message, one
copy to each neighbor in the list. After that, it waits the
chance of forwarding the remaining L-n copies. In this
case, the node will send the rest of the copies in future
executions.

• No copies of the message will be stored inside the
messages heap of the source node, because all the copies
are distributed throughout the network.

• If a node belonging the coverage area is the destination
node of the message (destination address check), the
source node sends it a copy of the message and stops
sending copies to the remaining nodes.

Pseudocode of the forwarding code to be executed by the
source node is described next. Invoked primitives are written in
italics.

start
 info_protocol=getProtocolHeapPartition (Source_Spray_And_Wait)
 if (isEmpty(info_protocol)) then
 L = num_copies
 else L = info_protocol (num_copies)
 end_if
 counter = 0
 destination = false
 nodesList = requestNodeCoverage
 while (NOT end nodesList) AND (destination == false) do
 if (counter < L) then
 sendDataMessage (msg, nodesList(counter))
 counter = counter + 1
 if (isDestinationNode (nodesList(counter))) then
 destination = true
 end if
 end if
 end while
 if (destination == false) then
 if (counter != L) then
 addProtocolHeapPartition(Source_Spray_And_Wait,num_copies,
 L-counter)
 end if
 end if
end

Intermediate nodes

• It receives a copy of the message which was sent by
another node.

• It requests some information from the neighborhood.

• In case of no neighbors, it stores the message inside the
messages heap.

• If it has neighbors, sends the copy of the message
randomly to one of them.

start
 cases: RECEIVE_MESSAGE, NODE_TIMEOUT

 nodesList = requestNodeCoverage
 if (isEmpty (nodesList)) then
 storeMessage (msg)
 else
 node_id = random (nodesList)
 sendDataMessage (msg, nodesList(node_id))
 end if
end

B. Binary Spray & Wait
Source node (first hop)

• It sends L/2 copies of the message to the L/2 first nodes it
encounters. L value is set by source user (application). It is
a necessary operation parameter (num_copies).

• If the number of neighbors in the neighborhood n is less
than L/2, the source node sends L/2 copies of the message
to each neighbor in the list and waits the chance of also
forwarding L/2 copies to the (L/2)-n remaining nodes. In
this case, the node will send the rest of the copies in future
executions.

• It stores L/2 copies inside the messages heap.

• If a node belonging the coverage area is the destination
node of the message (destination address check), the
source node stops sending copies to the remaining nodes.

start
 info_protocol=getProtocolHeapPartition(Binary_Spray_And_Wait)
 if (isEmpty(info_protocol)) then
 L = num_copies
 else L = info_protocol (num_copies)
 end_if
 counter = 0
 destination = false
 nodesList = requestNodeCoverage
 while (NOT end nodesList) AND (destination == false) do
 if (counter < (L/2)) then
 for i from 0 to (L/2) do
 sendDataMessage (msg, nodesList(i))
 end_for
 if (isDestinationNode (nodesList(counter))) then
 destination = true
 end if
 end if
 end while
 if (destination == false) then
 if (counter != (L/2)) then
 addProtocolHeapPartition(Binary_Spray_And_Wait,num_copies,
 (L/2)-counter)
 storeMessage (counter,msg)
 else storeMessage (L/2, msg)
 end if
 end if
end

Intermediate nodes

• It receives X copies of the message which was sent by the
source node.

• It requests some information from the neighborhood.
• If X > 1, it sends X/2 copies of the message to the X/2

first nodes it encounters.
o It stores X/2 copies inside the messages heap.

• If X = 1, it sends a copy of the message to each node in
coverage.

o No copies are stored inside the messages heap.
start
 cases: RECEIVE_MESSAGE, NODE_TIMEOUT

 nodesList = requestNodeCoverage
 if (num_copies > 1) then
 counter = 0
 while (NOT end nodesList) do
 if (counter < (num_copies/2)) then
 for i from 0 to (num_copies/2) do
 sendDataMessage (msg, nodesList(i))
 end_for
 end if
 end while
 storeMessage (num_copies/2, msg)
 else
 for node in nodesList do
 sendDataMessage (msg, node)
 end_for
 end if
end

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
Vol.2, No5, October 2012

 614

V. CONCLUSION
In the last few years, researchers have proposed a wide

variety of routing protocols for ICMN. However, these
protocols are designed to be executed under particular
conditions. Moreover, researchers show homogeneous results
which cannot determine the best routing protocol for a
particular scenario. This entails the absence of tools to give a
node the ability of executing some of these protocols in a
generic way.

In this work, we propose a generic framework to execute
some of these ICMN routing protocols as a function of user
choice. For that, we have defined the AFN architecture and
messages format, both data and control messages. We have
shown that routing protocols can be implemented with this
framework using a reduced set of primitives and execution
rules. Moreover, two storage areas (one in the AFN and
another in the message) are needed to store stateful and history
information respectively.

We have also demonstrated that one of the most relevant
routing protocols in ICMN, Spray & Wait in both versions, can
be implemented using the generic framework. Furthermore, we
estimate a small size for the forwarding code to be executed by
AFNs due to its simplicity. This fact entails a small message
size. Thus, our proposal can be used as starting point for
researchers in ICMN routing: they can implement and validate
their routing protocols and create new potential ones to achieve
better results.

ACKNOWLEDGMENT
This work was supported in part by Gobierno de

Extremadura and European Regional Development funds (Ref:
PRE09184 and GRU10116).

REFERENCES
[1] A. Shark. The new public square. American City & County. December

2010. Accessed September 2012
http://americancityandcounty.com/technology/e-government-
applications-201012/

[2] A. Ferreira. Building a Reference Combinatorial Model for MANETs.
IEEE Network, vol. 18, issue 5, pp. 24-29. September-October 2004.

[3] S. Jain, K. Fall, R. Patra. Routing in a Delay Tolerant Network.
Proceedings of the ACM SIGCOM 2004, pp. 145-158. Portland,
Oregon, USA, 30 August-3 September 2004.

[4] A. Vahdat, D. Becker. Epidemic Routing for Partially Connected Ad
Hoc Networks. Technical Report CS-200006, Department of Computer
Science, Duke University, Durham, NC, 2000.

[5] T. Spyropoulos, K. Psounis, C. S. Raghavendra. Spray and Wait: An
Efficient Routing Scheme for Intermittently Connected Mobile
Networks. Proceedings of the 2005 ACM SIGCOMM Workshop on
Delay-Tolerant Networking. pp. 252-259. Philadelphia, USA. August
2005.

[6] T. Spyropoulos, K. Psounis, C. S. Raghavendra. Single-copy Routing in
Intermittently Connected Mobile Networks. Proceedings of the IEEE
SECON 2004. pp. 235-244. Santa Clara, CA, USA. 4-7 October 2004.

[7] A. Lindgren, A. Doria, O. Schelen. Probabilistic Routing in
Intermittently Connected Networks. ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, issue 3, pp. 19-20. July
2003.

[8] Y. Wang, H. Wu. DFT-MSN: The Delay Fault Tolerant Mobile Sensor
Network for Pervasive Information Gathering. Proceedings of the IEEE
INFOCOM 2006, pp. 1-12. Barcelona, Spain. April 2006.

[9] E. Jones, L. Li, Ward. Practical Routing for Delay Tolerant Networks.
Proceedings of the ACM SIGCOMM-DTN Workshop 2005.
Philadelphia, USA. 22-26 August 2005.

[10] Q. Li, D. Rus. Communication in Disconnected Ad Hoc Networks Using
Message Relay. Journal of Parallel and Distributed Computing, vol. 63,
issue 1, pp. 75-86. January 2003.

[11] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, J.
Welch. Virtual Mobile Nodes for Mobile Ad Hoc Networks. 18th
International Sympousium on Distributed Computing. Amsterdam,
Netherlands. October 2004.

[12] K. Nichols, S. Blake, F. Baker, D. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474.
December 1998.

[13] A. De La Oliva, A. Banchs, I. Soto, T. Melia, A. Vidal. An overview of
IEEE 802.21: media-independent handover services. IEEE Wireless
Communications, vol. 15, no. 4, pp. 96-103, August 2008.

AUTHORS PROFILE

Jaime Galán-Jiménez received his Engineering degree in
Computer Science Engineering at the University of
Extremadura (Spain) in 2007, where he is currently
working in the Computer Science and Communications
Engineering Department. In 2009, he received a PhD grant
from the Regional Government of Extremadura to conduct
his research. His main research topics are intermittently
connected mobile networks, energy efficient networks and
interferences in wireless technologies.

Alfonso Gazo-Cervero received his PhD in computer
science and communications from the University of
Extremadura. He is currently the main researcher of the
Advanced and Applied Communications Engineering
Research Group (GITACA) of the University of
Extremadura, where he also holds an assistant professor
position. His research interests are mainly related to
capacity planning, routing protocols, overlay networks and
energy efficient networks.

