
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

Datapath Reuse in a Multi-Standard FEC Kernel

 Abha Jain, Dr. Ashwani Singh
 Department of Electronics, Helium Infotech Private Limited
 Radharaman Institute Of Technology & Science, Bhopal, India. Ghaziabad, India

Email: abha_jain23@yahoo.co.in Email: singh.ashwani@gmail.com

Abstract—Sharing of datapath and memories across different

forward error correction (FEC) decoder implementations are
important in flexible wireless communication system design.
In this paper, we explore datapath reuse possibilities across
some important FEC families like convolutional, turbo and low
density parity check (LDPC) codes. At first, design of a reduced
complexity trellis network for shuffling the updated state metrics
in Viterbi and Turbo decoding kernel is presented. Our design
results in complexity reduction of upto 70 % compared to trellis
networks implemented in state of art multi standard FEC kernels.
Furthermore, the hardware reuse potential of different existing
implementation schemes for check node processing in LDPC
decoding is explored over such a FEC kernel architecture. In the
last part of the paper, we propose a novel parallel implementation
approach (”Tree-Way”) for check node processing, which fits very
well with underline FEC Kernel architecture. Implementation
results are presented showing that the proposed scheme provides
significant speed-up in terms of required clock cycles without
significant increase in combined datapath area compared to
existing approaches.

Index Terms—LDPC codes, Turbo Codes, Min-Sum Algorithm,
Max-Log-Map Algorithm, VLSI Decoder Architecture.

I. INTRO DUCTION

Support of multi modes in emerging wireless standards
has been pushing the need for flexible devices. Among the
different functionalities of such standards, one of the most de-
manding operations is channel decoding. Convolutional codes
(CC), turbo codes and low-density parity-check codes (LDPC)
are established channel coding schemes. However, multiple
variations of these algorithms are employed in standards.
Every standard uses a different configuration of an algorithm
which makes it unique to that standard. For example, the
turbo coding algorithm used in UMTS employs a different
polynomial, block size, and coding rate from that used in
WiMAX. This translates to a further increase in complexity
of a flexible channel decoding platform.

In last few years many research activities have emerged
proposing implementations in order to achieve flexible and
high throughput decoder architectures for supporting the flex-
ibility across different FEC code families. Approaches com-
bining the turbo and Viterbi decoding have been reported in
[1], [2] etc. A unified decoder architecture for LDPC and turbo
codes has been presented in [3] where multi-mode decoding is
achieved by employing a flexible add-compare-select (FACS)
unit. By representing LDPC codes as parallel concatenated
single parity check (PCSPC) codes, authors have tried to
efficiently reuse the turbo decoding infrastructure for LDPC
decoding functions.

In the later years when focus was shifted towards application
specific instruction-set processor (ASIP) architectures, authors
in [4] presented the FlexiTreP ASIP family which supports
trellis based channel codes. In [5] a memory sharing across
turbo and LDPC code in an application specific processor
(ASIP) was explored. The FlexiTreP core is merged with
an LDPC ASIP core into a single ASIP, named FlexiChaP,
which is capable to support CC, turbo codes, and structured
LDPC codes. It was shown that because of the efficient
memory sharing across turbo and LDPC decoding, area in-
crease in FlexiChap is very small compared to FlexiTrep
ASIP. However sharing of datapath logic area (which is about
25% of the complete ASIP) across these two families were
considered insignificant. Very recently in [6] authors proposed
the application-specific instruction programmable architecture
addressing in a unified way the emerging turbo and LPDC cod-
ing requirements of 3GPP-LTE, IEEE802.11n, IEEE802.16(e)
and DVB-S2/T2 where datapath and memory reuse across
different FEC families has been used.

From the analysis of the state of the art in hardware reuse
in flexible channel decoder design two important points can
be gathered. First, memory sharing across different codes
definitely is the bigger player in overall reuse scenario and
several works present efficient technique for memory reuse.
However, datapath logic which could be up to 25% of the
whole decoder complexity do present an interesting area of
exploration for hardware reuse, mostly because of a multiplic-
ity of ways to implement different FEC decoding algorithms.
Secondly, it can be seen that a comprehensive analysis of
datapath reuse providing the designer with the choice to decide
on the different possible ways of implementing basic FEC
computation units is still lacking in existing works. Motivated
by these observations, in this paper we present some new
results in datapath hardware reuse across different FEC code
families.

This paper is divided into VI sections. A design space
of flexible channel decoder implementation is explored in
section II highlighting the problem subset dealt in this work. A
general architecture of the turbo decoding kernel and its reuse
for implementing Viterbi decoding algorithm is presented in
Section III with special focus on reduced complexity trellis
networks for shuffling the updated state metrics. Section IV
presents a short description of different check node architec-
tures used for LDPC decoding and the datapath reuse scenarios
in case of their mapping on turbo decoding kernel. In Section
V a new ”Tree Way” approach for check node update in

arul
Text Box
686

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

LDPC decoding is proposed, along with comparison of ASIC
synthesis results for different check node architectures mapped
onto turbo decoding kernel. Finally, Section VI concludes the
paper.

II. FLEXIBLE FEC DECODER D ESIGN S PACE

The implementation of complex (iterative) channel decoding
systems became essential to reach the performances now
required in term of quality of transmission. Dedicated hard-
ware architectures (i.e. ASIC) implementing parts of these
systems are already been dealt with in many existing works.
However, the requirements of: very low error rate, very high
throughput and increased flexibility of the implementation,
create the need for adequate multiprocessor architectures.
In this context, Multi-Processor System-on-Chip (MPSoC)
architectures are being widely investigated in recent years.
A MPSoC based flexible decoder design space is shown in
Figure 1. Here application specific processing element design
capable of supporting different channel decoding algorithms
and their different scales constitute challenging subset of
flexible channel decoder architecture design problem (shown
in Figure 1). It can be seen that, other than the different codes
to be supported, the system specification requirement of the
required decoder throughput is one of the important factors
to keep in mind while designing the processing element.
Furthermore due to the iterative exchange of data between
processing elements each processor working on the same data
block has to communicate with each other, yielding only
limited locality. A communication network has to support the
communication demands of the different processing elements
without degrading the throughput of the overall system, which
is the other important subset of the flexible decoder design
problem space as seen in Figure 1.

be explored while designing a flexible processing element is
the reuse of hardware resources (datapath, memories) across
different decoding algorithm implementations (highlighted by
dotted box in Figure 1). The work in this paper focuses on
this problem set, more specifically on the datapath reuse part
as reuse of memory components has already been studied
across several standards, some new results are presented in
the following sections.

III. A FEC KERNEL F OR TURBO AND VITERBI DECODING

In turbo decoding the processing steps are the basic Soft
Input Soft Output (SISO) decoders which implement the BCJR
algorithm [7]. Decoding of the binary and duo-binary turbo
codes is performed using either Log-Map or the Max-Log-
Map version of BCJR algorithm. In the Log-MAP algorithm,
the function used to compute the forward (α), backward (β)
and log-likelihood ratio (LLR) output metric is given as:

f (a, b) = max(a, b) + ln(1 + e−|a−b|). (1)

On the other hand Max-Log-MAP algorithm is a simpler sub-
optimal version of Log-MAP and could be obtained simply by
discarding the correction factor in equation (1). Fig. 2 depicts
the architecture of a multi standard turbo kernel which is quite
similar to the one proposed in [8]. We have followed mul-
tiprocessor approach to implement reconfigurable FEC kernel
where each processor performs state computation operation.
Moreover, within a particular type of channel coding, the code
rates and polynomials are also variable, this translates to a need
of high flexibilty inside the trellis kernel. The kernel consists of
8 processing units named Double-ACS (D-ACS) as the basic
building block of Max-Log-MAP algorithm implementation.
Each of these units contains 4 adders and 3 Compare Select
(CS) elements as shown in Fig. 4.(a) in next section. The de-
signed kernel has two operating modes. In mode1, it performs
all the forward and backward state metric computation and
the results are stored in State Metric (SM) memory banks,

 while in mode2 it can also perform certain stages in ACS
operations of LLR computation calculation (partial LLR). The
architecture can process binary turbo codes directly or reusing

duo-binary trellis, thanks to trellis compaction [9]. One D-
ACS unit is assigned to each state (2 states for binary codes)
and the interconnection between these units is established by
means of a network (ACS Network) that maps multiple trellis
diagrams for different turbo codes. Each D-ACS unit caters
to 4 trellis transitions; hence the maximum trellis transition
parallelism is 32, which very well supports the requirement of
current standards as shown in Table I and Table II. For a more
efficient reuse of the computing resources, for lower states

Fig. 1. Design Space of Flexible Channel decoder

The need to achieve high throughput pushes the demand
for sub-optimal algorithms design of related code encoding
and decoding procedures for low latency implementation,
which however need to be efficiently validated for their error
performance robustness. The other problem which needs to

code (4,8) forward and backward recursions are performed in
parallel.

By analyzing the concepts and the architectures of the
convolutional and the turbo code decoders, some circuits
sharing techniques are applied to merge the main functions
into one decoder. Until now some approaches combining the
turbo and Viterbi decoding have been reported in [2] and [10].

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

No. Interconnection Scenario
1 16 and higher State CC
2 8 state Duo-Binary turbo forward trellis
3 8 state Duo-Binary turbo backward trellis
4 16 state Binary turbo forward trellis
5 16 state Binary turbo Backward trellis
6 8 state Binary turbo forward/backward trellis
7 4 state Binary turbo forward/backward trellis
8 16 state Binary turbo LLR computation
9 8 state Duo-Binary turbo LLR computation

10 16 state Binary turbo LLR computation
11 4 state Binary turbo LLR computation

TABLE I
FEC KERNEL PARAMETERS I N D IFFERENT STANDARDS FOR CC CODING

Standard Code Rate States Throughput (Mbps)
UMTS 1/2, 1/3 256 0.064

CDMA 2000 1/2, 1/3 256 0.038
DVB 1/2 64 32
DAB 1/4 64 1.1

WiLAN 1/2 64 54
GSM 1/2 16 0.0096

TABLE II

FEC KERNEL PARAMETERS I N D IFFERENT STANDARDS FOR TURBO
CODING

Standard Code Type States Throughput (Mbps)
WiMAX 802.16e Duo-Binary 8 70

DVB-RCS Duo-Binary 8 31
UMTS Binary 4 2.3

CDMA 2000 Binary 8 2
3GPP2 Binary 16 -

The fundamental fact utilised in these works about the datapath
sharing between turbo and Viterbi decoding is that both Viterbi
and Max-Log-Map algorithms work with add-compare-select
(ACS) operations. In our kernel implementation, for Viterbi
decoding case, 2 states are mapped to one D-ACS unit. The
platform is capable of handling up to 16 states CC as fully
parallel architecture, for higher numbers of states (e.g. 32-
256) trellis operations are mapped to one D-ACS following the
approach mentioned in [11]. Reuse of this kernel for LDPC
decoding functionality will be presented in the next sections.

and wireless communication systems the constraint length of
convolutional codes varies typically between (5-9) implying
states to be supported as 16-256. Convolutional codes are used
as component codes for turbo codes used in emerging wireless
standard. Here the constraint length typically varies between
3-5, implying states to be supported as 4-16. In addition to
this, WiMax (802.16e) and DVB standards use duo-binary
turbo codes where each state in the trellis has four incoming
and four outgoing branches. Since the reconfigurable platform
supports different communication standards, multiple trellis
states with different communication requirements need to be
supported. The simplest solution to support this flexibility
would be a fully interconnected network as designed in [8],
which however would occupy significant area. For our kernel
design interconnection between 16 outputs of kernel which
are fed back to the 32 inputs based on trellis structure, a
fully interconnected network will require (32x15=480) 2-1
multiplexers. For a more judicious use of hardware resource
we propose to map different possible communication
scenarios resulting from the need to support different
standards; such scenarios are classified in Table III. As the
next step we

TABLE III
ACS INTERCONNECTION S CENA RIOS

map these 11 scenarios over a single ACS network acting

as a common interconnection across all supported codes:
this approach provides a significant hardware reduction as
summarized in Table IV, where complexities are expressed
in terms of 2:1 multiplexers. Taking into account forward

 and backward trellis computations for all the codes supported
Fig. 2. Multistandard Turbo Kernel.

The most critical factor that affects the processing efficiency

is the communication scheme of moving data between D-
ACS units. Since the reconfigurable platform supports dif-
ferent communication standards, multiple trellis states with
different communication requirements need to be supported.
Furthermore as in mode2 platform is reused for partial LLR
computation, such a reuse necessitates extra connections on
the ACS network element of the kernel which is detailed in
following sub section.

A. ACS Network Reuse

As mentioned in previous sub-section, interconnection be-
tween D-ACS units is established according to trellis diagram
of the code. As shown in Table I and Table II, in mobile

in standards under consideration and possibility of reuse of
kernel for partial LLR computation, the designed network
still occupies 70 % less area in terms of multiplexers used
as compared to fully interconnected network as designed in
[8].

TABLE IV
COMPLEXITY O F ACS NETWORK U SING C LASSIFICAT ION O F TABLE III

Unit mode 1 mode 2 State of Art ([10])
MUX (2-1) 84 133 480

IV. TURBO FEC KERNEL REUSE FOR LDPC DECODING

A LDPC decoder is defined by its parity check matrix H of
M rows by N columns. Each column in H is associated with
one bit of the codeword or Variable Node (VN), and each
row corresponds to a parity check equation or Check Node

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

(CN). LDPC codes are decoded in an iterative way by using
the sum-product algorithm or belief propagation algorithm
involving CN and VN updates [12]. However this two phase
decoding has recently given way to the so called layered or
shuffled decoding [13], [14] which results in approximately

part of the check node processing. Complete details of the
implementation aspects of the 2 min check node architecture
is beyond the scope of this work, interested readers are referred
to [15].

two times faster convergence of the algorithm. For highly ef-
ficient decoder implementations it is furthermore necessary to
use suboptimal check node approximations of low complexity.

Fig. 3. State Metric (turbo) and Check Node (LDPC) processing implemen-
tations

In Fig. 3 the right half shows different ways in which the

core check node computations can be performed. Frequency
domain computation kernel [14] involves addition operation
and look up table (LUT) and is far away from turbo ker-
nel’s ACS operations, thus it will not be considered in this
work. The forward backward (FB) way is similar to turbo
processing on a 2 state trellis and could be performed either
using min-sum (which is similar as Max-Log-Map from
implementation perspective) or the Log-Map [14] algorithm.
Method known as 2-values calculation (or 2MIN) exploits the
fact that in min-sum decoding, out of all CN LLRs of a CN
only two magnitudes are of interest, since only the minimum
(MIN1) and the second minimum magnitude (MIN2) are used

Fig. 4. (a) D-ACS unit with Turbo decoding functionality. (b) D-ACS unit
with Turbo/LDPC (2 MIN) functionalities.

The dataflow for implementing the min finder algorithm is
highlighted by the dotted lines in Fig. 4.(b). Three CS units are
completely reused for min finder function. It can be seen that
extra Level 1 and 3 multiplexer units are introduced in turbo
D-ACS while supporting the LDPC decoding functionality.

V. TREE -WAY IMPLEMENTATION SCHEME

In this section we present a parallel implementation scheme
of check node updates, developed keeping in mind the trellis
computation kernel of turbo decoding. Fig 5 shows a simple
graphical representation of the approach. For check node

to produce LLRs for connected VNs. It is the natural way to
compress data in memory and normally results in significant
memory saving in CN kernel [15]. There are other similar
approaches in this class, like λ-min [16] or average min-sum

[17]. The proposed new category of implementation named
”Tree-Way” approach will be detailed in the next section.

While reusing the turbo kernel for LDPC decoding utilizing
either FB way or 2 value computation approach, 8 serial check

node computation can be processed in parallel, each of them

mapped onto separate D-ACS unit. Fig. 4.(a) shows the D-
ACS unit with only turbo functionality (basic blocks in Fig.
2), in which Level 2 CS is active only when duo-binary or
”trellis compacted” turbo-code is used, otherwise there are two
separate datapaths (shown by the bold lines), handling of these
configurations results in the use of LEVEL 1 MUX. Inputs
NETOUT correspond to updated state metric values routed
through ACS network. Incorporating LDPC functionality in
the turbo kernel results in increased complexity of the basic
D-ACS unit. As an example, Fig. 4.(b) shows a D-ACS unit
with both turbo and LDPC (2-value) functionalities, for LDPC

Fig. 5. Parallel Tree-Way Calculation of VN extrinsics

degree dc = 6, each VN (i1 ,i2 , ...i6) is represented as a leaf
node and tree is traversed performing min calculation at branch
nodes until VN extrinsics are derived at the root nodes (e1 ,e2 ,
...e6). One of the key contributions of this paper is that for a
parallel check node architecture we generalize the tree network
connectivity and the data flow for any value of dc and present
a fairly simple control mechanism for it. For the sake of
architecture uniformity odd dc values are considered as their
even counterpart with extra VN intrinsic value initialized at

decoding it is used only for MIN1 and MIN2 calculation +∞ (i.e. dc =dc if dc is even; else dc =dc +1).

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

dc NCC Permutation dc NCC Permutation
5,6 4 1 19, 20 7 1, 2, 4, 8
7,8 5 1, 2 21, 22 7 1, 2, 4, 8

9,10 5 1, 2 23, 24 8 1, 2, 4, 8, 10
11,12 6 1, 2, 4 25, 26 7 1, 2, 4, 8
13,14 6 1, 2, 4 27, 28 8 1, 2, 4, 8, 12
15,16 7 1, 2, 4, 6 29, 30 8 1, 2, 4, 8, 12
17,18 6 1, 2, 4 31, 32 9 1, 2, 4, 8, 12, 14

c

c c

d

c

c

Fig 6 shows the architectural mapping of different stages

of VN extrinsic calculation for proposed ”Tree-Way” scheme,
other than sign accumulation which is performed by separate
XOR tree (not shown in figure), VN extrinsic calculation
consists of following stages:

A. Direct VN Comparison (DVC) stage

TABLE V
CLOCK CYCLE REQU IREMENT AND SHIFT PERMUTATION .

 As seen in Fig 6 for d’c=8, the intrinsic values (i1,i2, ...i8) are
fed parallely to two D-ACS units that are configured as 4 CS
units. For all values of dc there is only one direct comparison
stage. The output of DVC and each subsequent stage is passed
on to next stage through ACS network (NETOUT) as well as
are stored in SM memory (see Fig 2) for use in later stages.

’1000’ represent first two MSC stage outputs and so on. For a
given stage, the address to be accessed in SM memory depends
on d value and can be derived using a relatively simple control
based on binary representation of the value dc -2. For example

for d =16, corresponding binary representation of d -2 = 1110
i.e. 1000+100+10, thus address for memory access during the
shuffle stage corresponds to values at labels of ’100’ and ’10’.
At this point it is interesting to evaluate the hardware

complexity of the MSC shuffled network. From the perspec-
tive of reusing the ACS-Network of Turbo/Viterbi kernel for
LDPC decoding the permutations in Table V are mapped
over the interconnection matrix for Turbo/Viterbi which is
based on classification of Table III. The resultant intercon-
nection network still occupies 50 % less area in terms of

DVC MSC EC

Fig. 6. Generalization of Tree-Way Scheme

B. Multiple Shuffled Comparison (MSC) stage
Shuffled comparison stage could be compared to the trellis

computation stages in BCJR algorithm for turbo decoding. The
shuffle network implements a circular shifting permutation,
which can be easily mapped on to acs network without
significant hardware cost. The rotational shift depends on
c and the substage of the shuffled comparison stage. There

 multiplexers used as compared to fully interconnected

network as designed in [8] and supports turbo, Viterbi and
LDPC decoding functionalities. Although there is some
additional complexity due to control logic compare to the
optimized shuffle network without ”Tree-way” approach, the
hardware reuse is nevertheless significant.

C. Extrinsic Calculation (EC) stage
The last two stages for any value of d are extrinsic

calculation stage. As seen in Fig 6 input to these stages is the
output from the last MSC stage and the shifted VN intrinsic
values. This shift is circular over d’c and equal to 1 and 2
for EC stage 1 and 2 respectively.

are multiple shuffled stages depending on d
 and equal to

Ncc − 3 where Ncc is the required number of clock cycles
for check node update. For different values of dc Table V
provides the information on Ncc values and shift associated
with each shuffled stage. These permutations are stored
in similar way as trellis configuration in case of turbo
decoding for different codes. It should be noted that, FB and
2MIN approaches being inherently serial, take longer time for
check node updates, while ”Tree-Way” approach parallizes the
check node computation and results in lesser clock cycles. For
example, if dc =21, 7 cycles are required in proposed method
instead of 21 in a serial approach, which means 67% of saved
cycles.

As can be seen from Fig 6 the input to the shuffle network is
either the output from the immediate previous stage or output
of a much earlier stage stored in the state metric memories.
Irrespective of the input source of the shuffle network, the shift
associated with a stage is fixed. For retrieval of outputs stored
in SM memory from previous stages, a simple mechanism is
formulated. Output values at each stage are assigned a binary
label e.g. ’10’ represent DVC stage output, while ’100’ and

D. D-ACS unit implementation and ASIC Synthesis Results

Fig. 7 shows both turbo and LDPC (Tree-way) function-
alities incorporated in D-ACS unit. It can be seen that, this
flexibility comes at the cost of introduction of multiplexers
and logic gate layers in the architecture. Level 1 AND gates
and Level 3 MUX are driven by the choice of FEC decoding
algorithms (i.e. Turbo-binary/Turbo-duo binary/ LDPC), while
level 2 MUXs are supporting inputs from different stages of
”Tree-Way” implementation.

First half of the Table VI shows the comparison of ASIC
synthesis results for D-ACS unit when different check node
architectures are mapped onto turbo decoding infrastructure.
At the D-ACS unit level FB approach is the most promising as
it shows a datapath area saving of 17.2 % compared to sum of
two dedicated architectures for turbo and LDPC decoding. On
the other hand lower half of the table shows the comparison
of synthesis results at the higher level of hierarchy of FEC
kernel. It can be seen that though LDPC kernel with ”Tree-
way” approach occupies larger area than its FB and 2MIN

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

TABLE VI
SYNTHESIS COMPA RISON RESULTS . (LOGIC GATES IN 0.13µm TECHNOLOGY AT 300MHZ)

Cost of FEC D-ACS Unit H/W

Independent Architectures Combined Architectures
LDPC Sum of Two Architectures Shared Architecture TC

FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree
405 309 396 342 714 801 747 591

(-17.2%)
687

(-14.2%)
625

(-16.0%)
Cost of FEC Kernel H/W

LDPC Sum of Two Architectures Shared Architecture TC
FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree

7691 2472 3168 4803 10163 10859 12494 8628
(-15.1%)

9396
(-13.4%)

8901
(-28.7%)

[2] G. Kreiselmaier, T. Vogt, and N. Wehn, ”Combined Turbo and Convolu-
tional Decoder Architecture for UMTS Wireless Applications”, Proceed-
ings of DATE, pp. 192-197, Feb. 2004.

 [3] Y. Sun and J. R. Cavallaro, ”Unified decoder architecture for LDPC/turbo
codes”, IEEE Workshop on Signal Processing Systems, pp. 13-18, Oct.
2008.

[4] T. Vogt and N. Wehn, ”A Reconfigurable Application Specific Instruction

Set Processor for Convolutional and Turbo Decoding in a SDR Environ-
ment,” in Proc. of DATE’08, Germany, pp. 38-43, Mar. 2008..

[5] M. Alles, T. Vogt and N. Wehn, ”FlexiChaP: A reconfigurable ASIP for
convolutional, turbo, and LDPC code decoding,” Turbo Codes and Related
Topics, 2008 5th International Symposium on , pp.84-89, 1-5 Sept. 2008.

[6] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan, L.
Van der Perre, F. Catthoor, ”A unified instruction set programmable
architecture for multi-standard advanced forward error correction,” IEEE
Workshop on Signal Processing Systems, pp.31-36, Oct. 2008.

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ”Optimal decoding of linear
Fig. 7. D-ACS unit with Turbo/LDPC (Tree-way) functionalities.

counterparts, the complexity of its shared kernel architecture
remains almost the same as that of FB and 2MIN, thanks to
the reuse of turbo ACS network.

VI. CONCLUSION

In this paper we explored the design space of flexible multi-
standard FEC decoder platform. We presented a VLSI com-
plexity analysis of datapath sharing across FEC code families
viz. convolutional, turbo and LDPC for such a hardware plat-
form. A reduced complexity network was designed to realize
trellis structures for different turbo and convolutional codes
used in various wireless communication systems. Furthermore,
implementation results of various possibilities of check node
architectures in LDPC decoding reusing the Turbo Max-Log-
MAP core were presented. The results are useful for designers
to make early architectural choices while designing a multi-
standard FEC kernel. In addition to this, to best of our knowl-
edge, the paper presented the first parallel implementation
of check node computations using Min-sum algorithm for
LDPC decoding, which is optimized for maximun reuse of
turbo decoding kernel (-28.7 % less area compared to two
independent turbo and LDPC kernel) and is efficient in terms
of clock cycles required for check node computations.

REFERENCES

[1] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G.

Zhou, and L. M. Davis, ”A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-mm CMOS”, IEEE Journal of Solid-State
Circuits, pp. 1555-1564, Nov. 2002.

codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 284287, Mar. 1974.

[8] O. Muller, A. Baghdadi, M. Jeźeq́ uel. ”ASIP-Based Multiprocessor SoC
Design for Simple and Double Binary Turbo Decoding”, in Proc. of
DATE’06), Germany, pp. 1330-1335, Mar. 2006.

[9] P. Black and T. Meng, ”A 140-mb/s, 32-state, radix-4 Viterbi decoder”,
IEEE Commun. Lett., vol. 27, no. 12, pp. 1877-1885, Dec. 1992.

[10] K. Huang, F. Li, P. Shen, and A. Wu, ”VLSI design of dual-mode Viter-
bi/turbo decoder for 3GPP”, Proceedings of International Symposium on
Circuits and Systems,pp. 773-776, May 2004.

[11] B. Min, ”Architecture VLSI pour le decodeur de Viterbi”, Thesis:
Telecom Paris , June 1991.

[12] R. G. Gallager, ”Low-Density Parity-Check Codes”, IEEE Transactions
on Information Theory, pp. 21-28, Jan. 1962.

[13] D. Hocevar, ”A reduced complexity decoder architecture via layered de-
coding of LDPC codes,” IEEE Workshop on Signal Processing Systems,
USA, pp. 107-112, Oct. 2004.

[14] M. Mansour and N. Shanbhag, ”Low-power VLSI decoder architectures
for LDPC codes,” in Proc. of the 2002 International Symposium on Low
Power Electronics and Design, USA, pp. 284-289, Aug. 2002.

[15] M. Fossorier, M. Mihaljevic, and H. Imai, ”Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Transactions on communications, vol. 47, pp. 673-680, May 1999.

[16] T. Bhatt, V. Sundaramurthy, V. Stolpman, and D. McCain, ”Pipelined
block-serial decoder architecture for structured LDPC codes,” in Proc.
of IEEE International Conference on Acoustics, Speech and Signal
Processing , vol. 4, France, p. IV, May 2006.

 [17] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Peŕez and J.L. Walker
”Average Min-Sum Decoding of LDPC Codes” in Proc. of International
Symposium on Turbo Codes and Related Topics, Switzerland, pp. 356-
361, Sept. 2008.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol. 2, No. 6, December 2012

AUTHORS PROFILE

Abha jain received the B.Tech degree in Electronics &
Communication (RGPV BHOPAL) in 2004 and the
M.Tech. Degree in Digital communication (RGPV

BHOPAL) in 2010,and working as an Asst.Professor in Electronics &
Communication Dept. at Radharaman Institute Of Technology & Science,

Bhopal.

Dr. Ashwani Singh received dual Ph.D. degree from
Politecnico di Torino, Torino Italy and Universite de
Bretagne Sud, Lorient France. He holds a Master Degree
from Saint'Anna School of Advanced Studies, Pisa Italy

and Bachelor in Engineering from NIT Bhopal, India. His research and
development experience includes over 8 years in the Industry and Academia in
India and different European countries. He has authored/co-authored several
refereed journal/conference papers.

arul
Text Box
692

