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Abstract—Sharing of datapath and memories across different 

forward error correction (FEC) decoder implementations are 
important  in  flexible  wireless  communication  system  design. 
In  this  paper,  we  explore  datapath  reuse  possibilities  across 
some important FEC families like convolutional, turbo and low 
density parity check (LDPC) codes. At first, design of a reduced 
complexity trellis network for shuffling the updated state metrics 
in Viterbi and Turbo decoding kernel is presented. Our design 
results in complexity reduction of upto 70 % compared to trellis 
networks implemented in state of art multi standard FEC kernels. 
Furthermore, the hardware reuse potential of different existing 
implementation schemes for check node processing in LDPC 
decoding is explored over such a FEC kernel architecture. In the 
last part of the paper, we propose a novel parallel implementation 
approach (”Tree-Way”) for check node processing, which fits very 
well with underline FEC Kernel architecture. Implementation 
results are presented showing that the proposed scheme provides 
significant speed-up in terms of required clock cycles without 
significant increase in combined datapath area compared to 
existing approaches. 

Index Terms—LDPC codes, Turbo Codes, Min-Sum Algorithm, 
Max-Log-Map Algorithm, VLSI Decoder Architecture. 

 
I.  INTRO DUCTION  

 

Support  of  multi  modes  in  emerging  wireless  standards 
has been pushing the need for flexible devices. Among the 
different functionalities of such standards, one of the most de- 
manding operations is channel decoding. Convolutional codes 
(CC), turbo codes and low-density parity-check codes (LDPC) 
are established channel coding schemes. However, multiple 
variations  of  these  algorithms  are  employed  in  standards. 
Every standard uses a different configuration of an algorithm 
which  makes  it  unique  to  that  standard. For  example, the 
turbo coding algorithm used in UMTS employs a different 
polynomial, block size, and coding rate from that used in 
WiMAX. This translates to a further increase in complexity 
of a flexible channel decoding platform. 

In last few years many research activities have emerged 
proposing implementations in order to achieve flexible and 
high throughput decoder architectures for supporting the flex- 
ibility across different FEC code families. Approaches com- 
bining the turbo and Viterbi decoding have been reported in 
[1], [2] etc. A unified decoder architecture for LDPC and turbo 
codes has been presented in [3] where multi-mode decoding is 
achieved by employing a flexible add-compare-select (FACS) 
unit. By representing LDPC codes as parallel concatenated 
single parity check (PCSPC) codes, authors have tried to 
efficiently reuse the turbo decoding infrastructure for LDPC 
decoding functions. 

In the later years when focus was shifted towards application 
specific instruction-set processor (ASIP) architectures, authors 
in [4] presented the FlexiTreP ASIP family which supports 
trellis based channel codes. In [5] a memory sharing across 
turbo and LDPC code in an application specific processor 
(ASIP)  was  explored.  The  FlexiTreP  core  is  merged  with 
an LDPC ASIP core into a single ASIP, named FlexiChaP, 
which is capable to support CC, turbo codes, and structured 
LDPC codes. It was shown that because of the efficient 
memory sharing across turbo and LDPC decoding, area in- 
crease  in  FlexiChap  is  very  small  compared  to  FlexiTrep 
ASIP. However sharing of datapath logic area (which is about 
25% of the complete ASIP) across these two families were 
considered insignificant. Very recently in [6] authors proposed 
the application-specific instruction programmable architecture 
addressing in a unified way the emerging turbo and LPDC cod- 
ing requirements of 3GPP-LTE, IEEE802.11n, IEEE802.16(e) 
and DVB-S2/T2 where datapath and memory reuse across 
different FEC families has been used. 

From the analysis of the state of the art in hardware reuse 
in flexible channel decoder design two important points can 
be gathered. First, memory sharing across different codes 
definitely is the bigger player in overall reuse scenario and 
several works present efficient technique for memory reuse. 
However, datapath logic which could be up to 25% of the 
whole decoder complexity do present an interesting area of 
exploration for hardware reuse, mostly because of a multiplic- 
ity of ways to implement different FEC decoding algorithms. 
Secondly, it can be seen that a comprehensive analysis of 
datapath reuse providing the designer with the choice to decide 
on the different possible ways of implementing basic FEC 
computation units is still lacking in existing works. Motivated 
by these observations, in this paper we present some new 
results in datapath hardware reuse across different FEC code 
families. 

This  paper  is  divided  into  VI  sections.  A  design  space 
of flexible channel decoder implementation is explored in 
section II highlighting the problem subset dealt in this work. A 
general architecture of the turbo decoding kernel and its reuse 
for implementing Viterbi decoding algorithm is presented in 
Section III with special focus on reduced complexity trellis 
networks for shuffling the updated state metrics. Section IV 
presents a short description of different check node architec- 
tures used for LDPC decoding and the datapath reuse scenarios 
in case of their mapping on turbo decoding kernel. In Section 
V  a  new  ”Tree  Way”  approach for  check  node  update  in 
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LDPC decoding is proposed, along with comparison of ASIC 
synthesis results for different check node architectures mapped 
onto turbo decoding kernel. Finally, Section VI concludes the 
paper. 

 
II.  FLEXIBLE FEC DECODER D ESIGN S PACE 

The implementation of complex (iterative) channel decoding 
systems became essential to reach the performances now 
required in term of quality of transmission. Dedicated hard- 
ware architectures (i.e. ASIC) implementing parts of these 
systems are already been dealt with in many existing works. 
However, the requirements of: very low error rate, very high 
throughput and increased flexibility of the implementation, 
create  the  need  for  adequate  multiprocessor  architectures. 
In this context, Multi-Processor System-on-Chip (MPSoC) 
architectures are being widely investigated in  recent years. 
A MPSoC based flexible decoder design space is shown in 
Figure 1. Here application specific processing element design 
capable of supporting different channel decoding algorithms 
and their different scales constitute challenging subset of 
flexible channel decoder architecture design problem (shown 
in Figure 1). It can be seen that, other than the different codes 
to be supported, the system specification requirement of the 
required decoder throughput is one of the important factors 
to keep in mind while designing the processing element. 
Furthermore due to the iterative exchange of data between 
processing elements each processor working on the same data 
block has to communicate with each other, yielding only 
limited locality. A communication network has to support the 
communication demands of the different processing elements 
without degrading the throughput of the overall system, which 
is the other important subset of the flexible decoder design 
problem space as seen in Figure 1. 

 
 

  

be explored while designing a flexible processing element is 
the reuse of hardware resources (datapath, memories) across 
different decoding algorithm implementations (highlighted by 
dotted box in Figure 1). The work in this paper focuses on 
this problem set, more specifically on the datapath reuse part 
as reuse of memory components has already been studied 
across several standards, some new results are presented in 
the following sections. 
 
III.  A FEC KERNEL F OR TURBO AND VITERBI DECODING 

In turbo decoding the processing steps are the basic Soft 
Input Soft Output (SISO) decoders which implement the BCJR 
algorithm [7]. Decoding of the binary and duo-binary turbo 
codes is performed using either Log-Map or the Max-Log- 
Map version of BCJR algorithm. In the Log-MAP algorithm, 
the function used to compute the forward (α), backward (β) 
and log-likelihood ratio (LLR) output metric is given as: 

f (a, b) = max(a, b) + ln(1 + e−|a−b| ).  (1) 

On the other hand Max-Log-MAP algorithm is a simpler sub- 
optimal version of Log-MAP and could be obtained simply by 
discarding the correction factor in equation (1). Fig. 2 depicts 
the architecture of a multi standard turbo kernel which is quite 
similar to the one proposed in [8]. We have followed mul- 
tiprocessor approach to implement reconfigurable FEC kernel 
where each processor performs state computation operation. 
Moreover, within a particular type of channel coding, the code 
rates and polynomials are also variable, this translates to a need 
of high flexibilty inside the trellis kernel. The kernel consists of 
8 processing units named Double-ACS (D-ACS) as the basic 
building block of Max-Log-MAP algorithm implementation. 
Each of these units contains 4 adders and 3 Compare Select 
(CS) elements as shown in Fig. 4.(a) in next section. The de- 
signed kernel has two operating modes. In mode1, it performs 
all the forward and backward state metric computation and 
the results are stored in State Metric (SM) memory banks, 

     while in mode2 it can also perform certain stages in ACS 
operations of LLR computation calculation (partial LLR). The 
architecture can process binary turbo codes directly or reusing 

  

 
 

 
 
 
 
 
 

  

 
 
 
 

duo-binary trellis, thanks to trellis compaction [9]. One D- 
ACS unit is assigned to each state (2 states for binary codes) 
and the interconnection between these units is established by 
means of a network (ACS Network) that maps multiple trellis 
diagrams for different turbo codes. Each D-ACS unit caters 
to 4 trellis transitions; hence the maximum trellis transition 
parallelism is 32, which very well supports the requirement of 
current standards as shown in Table I and Table II. For a more 
efficient reuse of the computing resources, for lower states 

Fig. 1.    Design Space of Flexible Channel decoder 
 

The need to achieve high throughput pushes the demand 
for sub-optimal algorithms design of related code encoding 
and decoding procedures for low latency implementation, 
which however need to be efficiently validated for their error 
performance robustness. The other problem which needs to 

code (4,8) forward and backward recursions are performed in 
parallel. 

By analyzing the concepts and the architectures of the 
convolutional and the turbo code decoders, some circuits 
sharing techniques are applied to merge the main functions 
into one decoder. Until now some approaches combining the 
turbo and Viterbi decoding have been reported in [2] and [10]. 
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No. Interconnection Scenario 
1 16 and higher State CC 
2 8 state Duo-Binary turbo forward trellis 
3 8 state Duo-Binary turbo backward trellis 
4 16 state Binary turbo forward trellis 
5 16 state Binary turbo Backward trellis 
6 8 state Binary turbo forward/backward trellis 
7 4 state Binary turbo forward/backward trellis 
8 16 state Binary turbo LLR computation 
9 8 state Duo-Binary turbo LLR computation 

10 16 state Binary turbo LLR computation 
11 4 state Binary turbo LLR computation 

 

TABLE I 
FEC KERNEL  PARAMETERS  I N  D IFFERENT  STANDARDS  FOR  CC CODING  

 

Standard Code Rate States Throughput (Mbps) 
UMTS 1/2, 1/3 256 0.064 

CDMA 2000 1/2, 1/3 256 0.038 
DVB 1/2 64 32 
DAB 1/4 64 1.1 

WiLAN 1/2 64 54 
GSM 1/2 16 0.0096 

 
TABLE II 

FEC KERNEL  PARAMETERS I N D IFFERENT  STANDARDS FOR  TURBO 
CODING  

 

Standard Code Type States Throughput (Mbps) 
WiMAX 802.16e Duo-Binary 8 70 

DVB-RCS Duo-Binary 8 31 
UMTS Binary 4 2.3 

CDMA 2000 Binary 8 2 
3GPP2 Binary 16 - 

 
 

The fundamental fact utilised in these works about the datapath 
sharing between turbo and Viterbi decoding is that both Viterbi 
and Max-Log-Map algorithms work with add-compare-select 
(ACS) operations. In our kernel implementation, for Viterbi 
decoding case, 2 states are mapped to one D-ACS unit. The 
platform is capable of handling up to 16 states CC as fully 
parallel architecture, for higher numbers of states (e.g. 32- 
256) trellis operations are mapped to one D-ACS following the 
approach mentioned in [11]. Reuse of this kernel for LDPC 
decoding functionality will be presented in the next sections. 

 
and wireless communication systems the constraint length of 
convolutional codes varies typically between (5-9) implying 
states to be supported as 16-256. Convolutional codes are used 
as component codes for turbo codes used in emerging wireless 
standard. Here the constraint length typically varies between 
3-5, implying states to be supported as 4-16. In addition to 
this, WiMax (802.16e) and DVB standards use duo-binary 
turbo codes where each state in the trellis has four incoming 
and four outgoing branches. Since the reconfigurable platform 
supports different communication standards, multiple trellis 
states with different communication requirements need to be 
supported. The simplest solution to support this flexibility 
would be a fully interconnected network as designed in [8], 
which however would occupy significant area. For our kernel 
design interconnection between 16 outputs of kernel which 
are fed back to  the 32 inputs based on trellis structure, a 
fully interconnected network will require (32x15=480) 2-1 
multiplexers. For a more judicious use of hardware resource 
we propose to map different possible communication 
scenarios resulting from the need to support different 
standards; such scenarios  are  classified in  Table  III.  As  the  
next  step  we 
 

TABLE III 
ACS INTERCONNECTION  S CENA RIOS  

 
 
 
 
 

 

 
 
 
 
 

   
 
 
 
 
 
 
map these 11 scenarios over a single ACS network acting 

  

 
 
 
 

as  a  common  interconnection  across  all  supported  codes: 
this approach provides a significant hardware reduction as 
summarized in Table IV, where complexities are expressed 
in  terms  of  2:1  multiplexers. Taking  into  account  forward 

  and backward trellis computations for all the codes supported 
Fig. 2.    Multistandard Turbo Kernel. 

 
The most critical factor that affects the processing efficiency 

is  the  communication scheme of  moving data  between D- 
ACS units. Since the reconfigurable platform supports dif- 
ferent communication standards, multiple trellis states with 
different communication requirements need to be supported. 
Furthermore as in mode2 platform is reused for partial LLR 
computation, such a reuse necessitates extra connections on 
the ACS network element of the kernel which is detailed in 
following sub section. 

 
A. ACS Network Reuse 

As mentioned in previous sub-section, interconnection be- 
tween D-ACS units is established according to trellis diagram 
of the code. As shown in Table I and Table II, in mobile 

in standards under consideration and possibility of reuse of 
kernel  for  partial  LLR  computation, the  designed  network 
still occupies 70 % less area in terms of multiplexers used 
as compared to fully interconnected network as designed in 
[8]. 
 

TABLE IV 
COMPLEXITY O F ACS NETWORK  U SING  C LASSIFICAT ION O F TABLE  III 

 

Unit mode 1 mode 2 State of Art ([10]) 
MUX (2-1) 84 133 480 

 
 
IV.   TURBO FEC KERNEL REUSE FOR LDPC DECODING  

A LDPC decoder is defined by its parity check matrix H of 
M rows by N columns. Each column in H is associated with 
one bit of the codeword or Variable Node (VN), and each 
row corresponds to a parity check equation or Check Node 
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(CN). LDPC codes are decoded in an iterative way by using 
the sum-product algorithm or belief propagation algorithm 
involving CN and VN updates [12]. However this two phase 
decoding has recently given way to the so called layered or 
shuffled decoding [13], [14] which results in approximately 

part of the check node processing. Complete details of the 
implementation aspects of the 2 min check node architecture 
is beyond the scope of this work, interested readers are referred 
to [15]. 
 

two times faster convergence of the algorithm. For highly ef- 
ficient decoder implementations it is furthermore necessary to 
use suboptimal check node approximations of low complexity. 

 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

 
 

 

 

 
 

 

 
 
 

 
 

 
 
Fig. 3.   State Metric (turbo) and Check Node (LDPC) processing implemen- 
tations 

 
In Fig. 3 the right half shows different ways in which the 

core check node computations can be performed. Frequency 
domain computation kernel [14] involves addition operation 
and look up table (LUT) and is far away from turbo ker- 
nel’s ACS operations, thus it will not be considered in this 
work. The forward backward (FB) way is similar to turbo 
processing on  a  2 state trellis and could be performed either 
using min-sum (which is similar as Max-Log-Map from 
implementation perspective) or the Log-Map [14] algorithm. 
Method known as 2-values calculation (or 2MIN) exploits the 
fact that in min-sum decoding, out of all CN LLRs of a CN 
only two magnitudes are of interest, since only the minimum 
(MIN1) and the second minimum magnitude (MIN2) are used 

 
Fig. 4.    (a) D-ACS unit with Turbo decoding functionality. (b) D-ACS unit 
with Turbo/LDPC (2 MIN) functionalities. 
 

The dataflow for implementing the min finder algorithm is 
highlighted by the dotted lines in Fig. 4.(b). Three CS units are 
completely reused for min finder function. It can be seen that 
extra Level 1 and 3 multiplexer units are introduced in turbo 
D-ACS while supporting the LDPC decoding functionality. 
 

V.  TREE -WAY IMPLEMENTATION SCHEME 

In this section we present a parallel implementation scheme 
of check node updates, developed keeping in mind the trellis 
computation kernel of turbo decoding. Fig 5 shows a simple 
graphical  representation  of  the  approach.  For  check  node 
 
 

 

to produce LLRs for connected VNs. It is the natural way to 
compress data in memory and normally results in significant 
memory saving in CN kernel [15]. There are other similar 
approaches in this class, like λ-min [16] or average min-sum 

  

[17]. The proposed new category of implementation named 
”Tree-Way” approach will be detailed in the next section. 

While reusing the turbo kernel for LDPC decoding utilizing 
either FB way or 2 value computation approach, 8 serial check 

 
 

 

node computation can be processed in parallel, each of them  

mapped onto separate D-ACS unit. Fig. 4.(a) shows the D- 
ACS unit with only turbo functionality (basic blocks in Fig. 
2), in which Level 2 CS is active only when duo-binary or 
”trellis compacted” turbo-code is used, otherwise there are two 
separate datapaths (shown by the bold lines), handling of these 
configurations results in the use of LEVEL 1 MUX. Inputs 
NETOUT correspond to updated state metric values routed 
through ACS network. Incorporating LDPC functionality in 
the turbo kernel results in increased complexity of the basic 
D-ACS unit. As an example, Fig. 4.(b) shows a D-ACS unit 
with both turbo and LDPC (2-value) functionalities, for LDPC 

Fig. 5.    Parallel Tree-Way Calculation of VN extrinsics 
 
degree dc  = 6, each VN (i1 ,i2 , ...i6 ) is represented as a leaf 
node and tree is traversed performing min calculation at branch 
nodes until VN extrinsics are derived at the root nodes (e1 ,e2 , 
...e6 ). One of the key contributions of this paper is that for a 
parallel check node architecture we generalize the tree network 
connectivity and the data flow for any value of dc and present 
a fairly simple control mechanism for it. For the sake of 
architecture uniformity odd dc  values are considered as their 
even counterpart with extra VN intrinsic value initialized at 

decoding it  is  used  only  for  MIN1  and  MIN2  calculation +∞ (i.e. dc =dc  if dc  is even; else dc =dc +1). 
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dc NCC Permutation dc NCC Permutation
5,6 4 1 19, 20 7 1, 2, 4, 8 
7,8 5 1, 2 21, 22 7 1, 2, 4, 8 

9,10 5 1, 2 23, 24 8 1, 2, 4, 8, 10 
11,12 6 1, 2, 4 25, 26 7 1, 2, 4, 8 
13,14 6 1, 2, 4 27, 28 8 1, 2, 4, 8, 12 
15,16 7 1, 2, 4, 6 29, 30 8 1, 2, 4, 8, 12 
17,18 6 1, 2, 4 31, 32 9 1, 2, 4, 8, 12, 14

c

c c

d 
 

c

c 

 
Fig 6 shows the architectural mapping of different stages 

of VN extrinsic calculation for proposed ”Tree-Way” scheme, 
other than sign accumulation which is performed by separate 
XOR tree (not shown in figure), VN extrinsic calculation 
consists of following stages: 

 

A. Direct VN Comparison (DVC) stage 
 

TABLE V 
CLOCK  CYCLE  REQU IREMENT  AND  SHIFT  PERMUTATION . 

    As seen in Fig 6 for d’c=8, the intrinsic values (i1,i2, ...i8) are
fed parallely to two D-ACS units that are configured as 4 CS 
units. For all values of dc there is only one direct comparison 
stage. The output of DVC and each subsequent stage is passed 
on to next stage through ACS network (NETOUT) as well as 
are stored in SM memory (see Fig 2) for use in later stages. 

 
 
’1000’ represent first two MSC stage outputs and so on. For a 
given stage, the address to be accessed in SM memory depends 
on d    value and can be derived using a relatively simple control 
based on binary representation of the value dc -2. For example 

   

 
 
 

 

 
 

 
 
 
 
 
 
 
 
 

for d  =16, corresponding binary representation of d -2 = 1110 
i.e. 1000+100+10, thus address for memory access during the 
shuffle stage corresponds to values at labels of ’100’ and ’10’. 
At  this  point  it  is  interesting  to  evaluate  the  hardware 

complexity of the MSC shuffled network. From the perspec- 
tive of reusing the ACS-Network of Turbo/Viterbi kernel for 
LDPC  decoding  the  permutations  in  Table  V  are  mapped 
over  the  interconnection matrix for  Turbo/Viterbi which  is 
based on classification of Table III. The resultant intercon- 
nection network still occupies 50  %  less area in  terms of 

 
DVC MSC EC 

 
Fig. 6.    Generalization of Tree-Way Scheme 

 
 

B. Multiple Shuffled Comparison (MSC) stage 
Shuffled comparison stage could be compared to the trellis 

computation stages in BCJR algorithm for turbo decoding. The 
shuffle network implements a circular shifting permutation, 
which  can  be  easily  mapped  on  to  acs  network  without 
significant hardware  cost.  The  rotational  shift  depends  on 
c  and the substage of the shuffled comparison stage. There 

   multiplexers used as compared to fully interconnected 

network as designed in [8] and supports turbo, Viterbi and 
LDPC decoding functionalities. Although there is some 
additional complexity due to control logic compare to the 
optimized shuffle network without ”Tree-way” approach, the 
hardware reuse is nevertheless significant. 
 

C. Extrinsic Calculation (EC) stage 
The last two stages for any value of d    are extrinsic 

calculation stage. As seen in Fig 6 input to these stages is the 
output from the last MSC stage and the shifted VN intrinsic 
values. This shift is circular over d’c and equal  to  1 and 2 
for EC stage 1 and 2 respectively.  

are  multiple  shuffled  stages  depending  on  d 
 and equal to 

Ncc  − 3 where Ncc  is the required number of clock cycles 
for check node update. For different values of dc  Table V 
provides the information on Ncc  values and shift associated 
with  each  shuffled stage.  These  permutations  are  stored  
in similar way as trellis configuration in case of turbo 
decoding for different codes. It should be noted that, FB and 
2MIN approaches being inherently serial, take longer time for 
check node updates, while ”Tree-Way” approach parallizes the 
check node computation and results in lesser clock cycles. For 
example, if dc =21, 7 cycles are required in proposed method 
instead of 21 in a serial approach, which means 67% of saved 
cycles. 

As can be seen from Fig 6 the input to the shuffle network is 
either the output from the immediate previous stage or output 
of a much earlier stage stored in the state metric memories. 
Irrespective of the input source of the shuffle network, the shift 
associated with a stage is fixed. For retrieval of outputs stored 
in SM memory from previous stages, a simple mechanism is 
formulated. Output values at each stage are assigned a binary 
label e.g. ’10’ represent DVC stage output, while ’100’ and 

 
D. D-ACS unit implementation and ASIC Synthesis Results 

Fig. 7 shows both turbo and LDPC (Tree-way) function- 
alities incorporated in D-ACS unit. It can be seen that, this 
flexibility comes at the cost of introduction of multiplexers 
and logic gate layers in the architecture. Level 1 AND gates 
and Level 3 MUX are driven by the choice of FEC decoding 
algorithms (i.e. Turbo-binary/Turbo-duo binary/ LDPC), while 
level 2 MUXs are supporting inputs from different stages of 
”Tree-Way” implementation. 

First half of the Table VI shows the comparison of ASIC 
synthesis results for D-ACS unit when different check node 
architectures are mapped onto turbo decoding infrastructure. 
At the D-ACS unit level FB approach is the most promising as 
it shows a datapath area saving of 17.2 % compared to sum of 
two dedicated architectures for turbo and LDPC decoding. On 
the other hand lower half of the table shows the comparison 
of synthesis results at the higher level of hierarchy of FEC 
kernel. It can be seen that though LDPC kernel with ”Tree- 
way” approach occupies larger area than its FB and 2MIN 
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TABLE VI 
SYNTHESIS  COMPA RISON  RESULTS . (LOGIC  GATES  IN 0.13µm TECHNOLOGY AT 300MHZ ) 

 
Cost of FEC D-ACS Unit H/W 

Independent Architectures Combined Architectures 
LDPC Sum of Two Architectures Shared Architecture TC 

FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree 
405 309 396 342 714 801 747 591 

(-17.2%)
687 

(-14.2%) 
625 

(-16.0%) 
Cost of FEC Kernel H/W 

LDPC Sum of Two Architectures Shared Architecture TC 
FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree 

7691 2472 3168 4803 10163 10859 12494 8628 
(-15.1%)

9396 
(-13.4%) 

8901 
(-28.7%) 
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counterparts, the complexity of its shared kernel architecture 
remains almost the same as that of FB and 2MIN, thanks to 
the reuse of turbo ACS network. 

 
VI.  CONCLUSION  

In this paper we explored the design space of flexible multi- 
standard FEC decoder platform. We presented a VLSI com- 
plexity analysis of datapath sharing across FEC code families 
viz. convolutional, turbo and LDPC for such a hardware plat- 
form. A reduced complexity network was designed to realize 
trellis structures for different turbo and convolutional codes 
used in various wireless communication systems. Furthermore, 
implementation results of various possibilities of check node 
architectures in LDPC decoding reusing the Turbo Max-Log- 
MAP core were presented. The results are useful for designers 
to make early architectural choices while designing a multi- 
standard FEC kernel. In addition to this, to best of our knowl- 
edge, the  paper  presented the  first parallel implementation 
of check node computations using Min-sum algorithm for 
LDPC decoding, which is optimized for maximun reuse of 
turbo decoding kernel (-28.7 % less area compared to two 
independent turbo and LDPC kernel) and is efficient in terms 
of clock cycles required for check node computations. 
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